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Time Course of Frequency Effects in Spoken-Word
Recognition: Evidence from Eye Movements
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In two experiments, eye movements were monitored as participants followed spo-
ken instructions to click on and move pictures with a computer mouse. In Experi-
ment 1, a referent picture (e.g., the picture of a bench) was presented along with
three pictures, two of which had names that shared the same initial phonemes as
the name of the referent (e.g., bed and bell). Participants were more likely to fixate
the picture with the higher frequency name (bed) than the picture with the lower
frequency name (bell). In Experiment 2, referent pictures were presented with three
unrelated distractors. Fixation latencies to referents with high-frequency names were
shorter than those to referents with low-frequency names. The proportion of fixa-
tions to the referents and distractors were analyzed in 33-ms time slices to provide
fine-grained information about the time course of frequency effects. These analyses
established that frequency affects the earliest moments of lexical access and rule
out a late-acting, decision-bias locus for frequency. Simulations using models in
which frequency operates on resting-activation levels, on connection strengths, and
as a postactivation decision bias provided further constraints on the locus of fre-
quency effects.  2001 Academic Press
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As the sound pattern of a spoken word unfolds over time, recognition
takes place against a backdrop of partially activated alternatives that compete
for recognition. The most activated alternatives are those that most closely
match the input. For instance, as a listener hears the word cap, lexical repre-
sentations of words with similar sounds, such as cat, will be briefly activated.
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The number of competitors, their frequency of occurrence in the language,
as well as the frequency of occurrence of the target word itself all affect
recognition (e.g., Luce & Pisoni, 1998; Marslen-Wilson, 1987, 1990). The
present study focuses on the time course of frequency effects for words and
their close competitors.

A variety of response measures has established that recognition of low-
frequency words is poorer than recognition of high-frequency words (e.g.,
Howes & Solomon, 1951). Superior performance on high-frequency words
may be observed either in the speed of the response when the stimulus infor-
mation is sufficient to support accurate performance, as in most reaction-
time paradigms (e.g., Marslen-Wilson, 1987) or in the accuracy of the re-
sponse when the stimulus is degraded (e.g., Luce, 1986; Goldinger, Luce, &
Pisoni, 1989).

In most current models of spoken-word recognition, frequency is assumed
to affect the activation levels of competing lexical candidates during lexical
access. For example, in models with discrete lexical representations such as
the ‘‘Cohort’’ model (Marslen-Wilson, 1987) or the TRACE model (McClel-
land & Elman, 1986), high-frequency words would be processed faster than
low-frequency words because frequency determines either the baseline acti-
vation level of each lexical unit (McClelland & Rumelhart, 1981; Marslen-
Wilson, 1990) or the strength of the connections from sublexical to lexical
units (MacKay, 1982, 1987). In distributed learning models, the representa-
tions of high-frequency words would be activated more rapidly because high-
frequency mappings are better learned, resulting in stronger connection
weights (Gaskell & Marslen-Wilson, 1997; Plaut, McClelland, Seiden-
berg, & Patterson, 1996). In contrast, the Neighborhood Activation Model
(henceforth, NAM; Luce, 1986; Luce & Pisoni, 1998) places the locus of
frequency effects in a decision stage that follows initial lexical activation.
In this model, the input stimulus activates a set of acoustic–phonetic patterns
that shares some degree of similarity with the input; these acoustic–phonetic
patterns in turn activate word-decision units that are tuned to them. High-
level information, such as word frequency, is associated with each word-
decision unit. Acoustic–phonetic information is assumed to drive the system
by activating word-decision units, whereas high-level lexical information is
assumed to operate by biasing these decision units. Frequency bias operates
by adjusting the activation levels represented within the word-decision units.
Thus, word frequency is not directly coded in the resting-activation level,
but rather operates as a bias on the activation of the word-decision unit.
Nonetheless, frequency comes into play before lexical access is completed.

An alternative hypothesis about the locus of frequency effects in word
recognition has been suggested by Balota and Chumbley (1984, 1985). They
argued that the facilitation for responding to high-frequency words compared
to low-frequency words in a task such as visual lexical decision mostly re-
flects a response bias that operates at a decision stage. Similarly, word-
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frequency effects in a pronunciation task (i.e., naming a word visually dis-
played) are attributed to the word-production process, which is presumed to
follow lexical access. This conception of frequency as a response bias ap-
pears similar to the decision bias incorporated in the NAM. However, it
further assumes that frequency effects occur late in processing, as a response
bias that affects decisions after lexical access is completed.

The locus of frequency effects has been widely debated in the visual-word
recognition and naming literature (e.g., Balota & Chumbley, 1990; Monsell,
Doyle, & Haggard, 1989; see Monsell, 1991, for a review). Paap and col-
leagues (Paap, Newsome, McDonald, & Schvaneveldt, 1982; Paap &
Johansen, 1994) argued that frequency effects occur during a verification
phase, following the initial activation phase. However, this claim has been
challenged by Allen and colleagues (Allen, McNeal, & Kvak, 1992; Allen,
Smith, Lien, Weber, & Madden, 1997). Models adopting a distributed repre-
sentation of word knowledge, however, do not assume distinct stages during
word recognition, such as pre- or postlexical access stages (e.g., Seiden-
berg & McClelland, 1989; Plaut et al., 1996). Such models show sensitivity
to word frequency because words that are presented more often during train-
ing have a larger impact on the settings of the connection weights (see
McCann & Besner, 1987, for a similar proposal). Thus, frequency can affect
multiple levels in the system: In a naming task, it affects both the compu-
tation of the phonological code and the conversion of the computed phono-
logical code into a sequence of articulatory-motor commands (see McRae,
Jared, & Seidenberg, 1990).

Although subject to intense debate in the visual-word recognition litera-
ture, the locus of frequency effects has received less attention in the spoken-
word recognition literature. Of particular interest are studies by Marslen-
Wilson (1987) and Zwitserlood (1989). In these studies, a spoken-word frag-
ment that matched both a high-frequency and a low-frequency lexical candi-
date was presented, followed shortly by the visual presentation of a target
word; participants were instructed to perform a lexical decision on the visual
target. The results revealed less facilitation (compared to a control) for target
words semantically associated with the low-frequency candidate than for tar-
get words associated with the high-frequency candidate. This was interpreted
as evidence that the higher frequency candidate becomes more activated than
the lower frequency candidate before the auditory input could distinguish
between the two. However, Connine, Titone, and Wang (1993) argued that
because the input was incomplete, subjects implicitly completed the input
with the more frequent alternative on a greater proportion of the trials; this
would lead to a larger priming effect for the more frequently generated alter-
native. On this account, frequency is being used to bias selection of the higher
frequency alternative rather than its activation. The same argument can be
applied to studies demonstrating word-frequency effects using the gating par-
adigm (Grosjean, 1980; Tyler, 1984).
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Connine et al. (1993) provided evidence that they interpreted as support
for models in which word frequency operates as a response bias without
affecting activation levels. In this study, participants heard stimuli with initial
stop consonants that varied along a voicing continuum; these ambiguous
sequences could map onto a high- or low-frequency word (e.g., ?est, halfway
between best and pest). Participants’ consonant identifications and response
times were analyzed. Previous research has shown that consonant identifica-
tions are influenced by the frequency of the alternatives (e.g., ?est is identi-
fied as best more often than pest), revealing lexical influence on phoneme
identification (Fox, 1984). Crucially, in the Connine et al. study, the ambigu-
ous stimuli were presented along with unambiguous words of high and low
frequencies (mixed list), or with only high-frequency words (high-frequency
list), or with only low-frequency words (low-frequency list). The manipula-
tion of extrinsic frequency (i.e., the list bias) was predicted to exaggerate
the effect of intrinsic word frequency in the high-frequency list and to reverse
the effect of intrinsic word frequency in the low-frequency list. Extrinsic
frequency is assumed to operate as a response bias, late in the process. If
intrinsic word frequency is coded in resting activation levels, Connine et al.
reasoned, its influence should still be observed at fast response times, before
extrinsic frequency comes into play (by exaggerating the effect of intrinsic
frequency in high-frequency list and reversing it in low-frequency list).

Connine et al.’s results did not support these predictions. They found a
strong effect of extrinsic frequency for fast responses and a reduced effect
for slow responses. Moreover, in the mixed lists, intrinsic word frequency
influenced the identification responses, but this influence was equivalent for
all ranges of response times. Connine et al. interpreted these results as evi-
dence against an implementation of (intrinsic) frequency in resting activa-
tions, as in TRACE. They argued that in TRACE, frequency effects should
be greater for longer response times because the system would have more
time for interaction between lexical representations, which code lexical fre-
quency, and phonemic representations, which phoneme identification is as-
sumed to bear on. Connine et al. concluded that intrinsic word frequency
does not function as an early source of information used to shape lexical
hypotheses, as would be predicted if frequency were coded in resting activa-
tions. Rather, they argued that frequency affects postaccess decision pro-
cesses.

Although the Connine et al. (1993) study provides intriguing support for
frequency as a late response bias, the results are far from conclusive. First,
the logic of the Connine et al. argument requires two controversial assump-
tions made by TRACE. The first is that there is feedback from lexical repre-
sentations to phonemic representations. The second is that phonemic deci-
sions are made using the same phonemic nodes that are used in lexical access.
Connine et al.’s predictions would not hold for a model without feedback
or for a model that posits separate decision nodes (cf. Norris, McQueen, &
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Cutler, 2000). Furthermore, Connine et al.’s arguments are based on verbal
predictions rather than actual simulations with TRACE. Thus, it is difficult
to know under just what conditions the predictions hold. Making predictions
without simulations is not straightforward without explicit assumptions
about how to relate the time course of lexical-activation levels and fast and
slow response latencies in phoneme identification. Finally, McQueen (1991)
found larger lexical influences on fast phoneme-identification times than on
slower identification times. This can be interpreted either as evidence against
feedback between lexical and phonemic levels or as evidence that phoneme-
identification latencies do not capture the time course of lexical influence
on phoneme activation: By the time fast responses are generated, lexical
feedback to phonemic nodes may have largely taken place; lexical influence
on slow latencies may be masked by the influence of late decision biases
specific to the task or activations reaching asymptotic levels. Regardless of
how McQueen’s results are interpreted, they suggest that using phoneme-
identification times to track the time course of lexically based frequency
effects is not straightforward.

The issues raised by the Connine et al. (1993) study highlight the impor-
tance of having precise information about the time course of activation for
lexical competitors in order to identify where, in the recognition process,
word frequency operates. Although researchers have developed an arsenal
of useful experimental methodologies (see Grosjean & Frauenfelder, 1996;
Lively, Pisoni, & Goldinger, 1994), it remains difficult to obtain data about
lexical access in continuous speech that is fine-grained enough to favor one
word-frequency account against the others. The presentation of increasingly
longer word fragments to measure the degree of activation of high- and low-
frequency competitors (Grosjean, 1980; Tyler, 1984; Zwitserlood, 1989)
aims at providing a continuous measure of lexical activation. However,
because it is quite remote from normal listening conditions, this technique
may cause listeners to adopt strategies that might not reflect normal lexical
access.

A growing number of researchers, building on work by Cooper (1974),
have recently begun to use eye movements to explore questions about the
time course of spoken-language comprehension (e.g., Altmann & Kamide,
1999; Eberhard, Spivey-Knowlton, Sedivy, & Tanenhaus, 1995; Keysar,
Barr, Balin, & Brauner, 2000; Tanenhaus & Spivey-Knowlton, 1996; Tanen-
haus, Spivey-Knowlton, Eberhard, & Sedivy, 1995; Trueswell, Sekerina,
Hill, & Logrip, 1999). In the version of the eye-tracking paradigm introduced
by Tanenhaus et al. (1995), participants follow spoken instructions to manip-
ulate real or pictured objects displayed on a computer screen while their eye
movements to the objects are monitored using a lightweight camera mounted
on a head band. Eye movements to objects in the visual scene have been
found to be closely time-locked to referring expressions in the unfolding
speech stream.
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Allopenna, Magnuson, and Tanenhaus (1998) explored the application of
this technique to the study of spoken-word recognition. Participants were
instructed to fixate a central cross and then followed a spoken instruction to
move (using a computer mouse) one of four objects displayed on a computer
screen (e.g., ‘‘Look at the cross. Pick up the beaker. Now put it above the
square’’). Eye movements to each of the objects were recorded as the name
of the referent object unfolded over time. On some crucial trials, the names
of some of the distractor objects were phonologically similar to the name
of the referent. For instance, the target picture beaker was presented with
the picture of a competitor that overlapped with the target word at onset,
beetle (henceforth, a cohort competitor, predicted to compete by the ‘‘Co-
hort’’ model, e.g., Marslen-Wilson & Welsh, 1978). The probability of fixat-
ing each object as the target word was heard was hypothesized to be closely
linked to the activation of the lexical representation of this object (i.e., its
name). The assumption providing the link between lexical activation and eye
movements is that the activation of the name of a picture influences the
probability that a subject will shift attention to that picture and thus make
a saccadic eye movement to fixate it.

Allopenna et al. (1998) showed that eye movements generated early in
the target word were equally likely to result in fixations to the cohort compet-
itor (e.g., beetle) and to the referent (e.g., beaker) and were more likely
to result in fixations to these pictures than to distractor controls that were
phonologically unrelated to the target word (e.g., carriage). Furthermore,
the fixations over time to the target, the cohort competitor, and a rhyme
competitor (e.g., speaker) closely matched functions generated by the
TRACE model of spoken-word recognition, given a simple implementation
of the hypothesis linking activation levels in TRACE to fixation probabilities
over time. The Allopenna et al. study suggests that the eye-tracking paradigm
is a powerful tool for providing detailed time-course information about lexi-
cal access in continuous speech. The timing of frequency effects as revealed
by fixations should be informative about whether word-frequency operates
early in processing, when the input is still ambiguous among multiple lexical
alternatives, or late in processing, after the input has converged on a single
lexical candidate. Furthermore, the explicit linking hypothesis between lexi-
cal activation and observed fixations allows for quantitative comparisons of
the goodness of fit between the observed and predicted fixations when word
frequency is implemented in resting activations, in connection strengths, or
as a bias in computing the activation of word-decision units.

Examination of frequency effects is also important for evaluating the gen-
eral usefulness of the eye-tracking paradigm. In this paradigm, a small set
of pictures is visually available to the listener. Participants could be adopting
task-specific strategies that bypass ‘‘normal’’ language comprehension (e.g.,
preactivating the names of the visually present pictures). Thus, it is possible
that the lexical candidates that enter the recognition process may be restricted
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to the visually present alternatives. Previous research has shown that well-
documented frequency and neighborhood effects in word recognition can be
dramatically reduced or even disappear in closed-set tests when all response
alternatives are treated as equally probable (Pollack, Rubenstein, & Decker,
1959; Sommers, Kirk, & Pisoni, 1997). Thus, it remains to be established
whether the eye-tracking paradigm is sensitive to characteristics of the lexi-
con that are not directly represented in the set of pictures displayed on a
trial. The answer bears directly on the hypothesis linking lexical activation
to eye movements and on the overall potential of the methodology for study-
ing word recognition in continuous speech.

The present study had three goals. First, we asked whether the eye-tracking
paradigm could capture subtle aspects of word processing such as word-
frequency effects. Second, by analyzing the time course of the frequency
effects on fixations, we evaluated two alternative accounts for the locus of
frequency effects: the response-bias account which predicts late frequency
effects, as suggested by Balota and Chumbley (1984, 1985) and Connine et
al. (1993), and an account of frequency as part of the word-recognition sys-
tem which predicts that frequency affects even the earliest moments of lexi-
cal activation. Finally, we implemented frequency in three ways (frequency
in resting activation, frequency in connection strengths, and frequency as a
postactivation bias) and compared the goodness of fit between the predicted
fixations generated by these models and the data. These simulations evalu-
ated whether these different models would yield different quantitative
and/or qualitative predictions and whether the data would favor one over
the others.

In Experiment 1, we presented participants with displays consisting of a
referent along with two cohort competitors that varied in frequency and an
unrelated distractor. For example, the referent bench was presented along
with a high-frequency competitor, bed; a low-frequency competitor, bell;
and a distractor, lobster. Participants were instructed to pick up the desig-
nated object by clicking on it with the computer mouse (e.g., ‘‘Pick up the
bench’’). As the initial sounds of the target word were heard, the competitors
were expected to be fixated more than the distractor as a consequence of
their phonological similarity with the initial portion of the input. In addition,
if fixations reflect lexical processing, more fixations to the high-frequency
competitor than to the low-frequency competitor would be expected. Cru-
cially, if lexical frequency operates on the lexical-access process (rather than
as a possible response bias), the advantage for fixating the high-frequency
competitor over the low-frequency competitor should be observed before the
auditory input provides disambiguating information.

Finding a frequency effect on the fixations to visually present competitors
would demonstrate that participants do not treat them as equally probable
referents. However, finding such effect does not preclude the possibility that
participants adopt some sort of verification strategy that does not reflect nor-
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mal spoken-word processing. In particular, participants could name the visu-
ally present pictures to themselves before hearing the referent’s name and
store these names in short-term memory; frequency could bias the order in
which the preactivated names are stored and/or retrieved. Experiment 2 eval-
uated whether an effect of frequency could be obtained when none of the
distractors was phonologically similar to the target. We varied the frequency
of the names of the referents (e.g., the high-frequency target horse vs the low-
frequency target horn) and presented them along with three phonologically
unrelated distractors. The referent picture was thus the only picture with a
name matching the target word. If the probability of fixating a picture reflects
activation of the lexical representation associated with this picture, fixations
should be made to referent pictures with high-frequency names faster than
to referent pictures with low-frequency names because high-frequency words
are activated faster than low-frequency words. Accounting for such a fre-
quency effect by a verification strategy due to previewing the pictures before
any relevant information is heard is not tenable, as we discuss later.

EXPERIMENT 1

Method

Participants

Twenty native speakers of English were recruited at the University of Rochester and paid
$7.50 for their participation.

Materials

Seventeen triplets were constructed. Each consisted of a target and two cohort competitors.
Cohort competitors were chosen in such a way that they overlapped with the target’s phonolog-
ical form to the same extent, but differed in lexical frequency (as reported in Francis & Kučera,
1982). For example, one target was bench, with the high-frequency competitor bed (with a
frequency of 139 per million) and the low-frequency competitor bell (with a frequency of 23
per million). For one triplet, bandaid/bank/banjo, the low-frequency competitor overlapped
with the target word more than the high-frequency competitor did. The complete set of triplets
is presented in Appendix A, set A. On average, the high-frequency competitor had a frequency
of 138 per million; the low-frequency competitor, 10 per million; and the target, 14.5 per
million. Each triplet was associated with a phonologically unrelated distractor (e.g., lobster).
In addition to these 17 experimental displays, 23 filler displays were constructed. In order to
prevent participants from developing expectations that pictures with phonologically similar
names were likely to be targets, 8 of the filler trials contained three items that started with
similar sounds and a phonologically unrelated item, which was the target. The 15 other filler
trials were composed of four phonologically unrelated items; three of them were presented
at the beginning of the session to familiarize participants with the task and the procedure.

The 160 pictures [(17123) trials 3 4 pictures] were all black-and-white line drawings.
They were selected from the Snodgrass and Vanderwart (1980) picture set as well as from
children’s picture dictionaries. In order to ensure that the pictures associated with high- and
low-frequency items were equally identifiable, we presented the pictures to 18 participants
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and asked them to write the name of the object represented. We thus collected names for the
34 cohort-item pictures. A correct response was an answer that exactly corresponded to the
intended name or this name preceded or followed by a modifier. So, shopping cart for the
intended cart was coded as a correct response, but chest for the intended trunk was not. The
agreement between participants’ responses and the intended names was 91.4% for the low-
frequency cohorts and 90.1% for the high-frequency cohorts.

Despite similar name agreement for high- and low-frequency items, it was important to
control for possible visual differences. Indeed, if the pictures associated with high-frequency
competitors attracted more attention than the pictures associated with low-frequency competi-
tors, more and longer fixations to the former compared to the latter would be found and mistak-
enly interpreted as a frequency effect. We thus needed, for each type of competitors, an esti-
mate of fixation probability that was independent of their phonological similarity with the
target word. We thus constructed another set of experimental trials and fillers (set B). The
experimental trials consisted of the same items except for the target, which was phonologically
unrelated to the cohorts or to the distractor (e.g., mushroom was one target, presented along
with bed, bell, and lobster, and participants heard the instruction ‘‘Pick up the mushroom’’).
These trials allowed us to compare the probability of fixating each cohort item when neither
matched the acoustic information of the target word. These probabilities should be triggered
by the visual characteristics of the pictures. In order to prevent strategies for finding a trial’s
target on the basis of phonological similarity between the pictured items, we constructed 13
filler trials where two items shared some similarity and one of them was the target. The materi-
als for set B are presented in Appendix A. Ten participants were randomly assigned to each
display set.1 For each set, five random orders were created; approximately the same number
of participants were assigned to each order.

The spoken instructions were recorded by a male native speaker of English in a soundproof
room, sampling at 22,050 Hz with 16-bit resolution. Each instruction was then edited and some
basic duration measurements were made. On average, the pick up the part of the instruction was
402 ms long in set A and 371 ms in set B; the target word was 498 ms long in set A and
497 ms in set B.

Procedure

Participants were seated at a comfortable distance from the computer screen. Participants’
eye movements were monitored using an Applied Scientific Laboratories eye tracker. Two
cameras mounted on a lightweight headband provided the input to the tracker. The eye camera
provided an infrared image of the eye. The center of the pupil and the first Purkinje image
(corneal reflection) were tracked to determine the position of the eye relative to the head. A
scene camera was aligned with the participant’s line of sight. A calibration procedure allowed
software to superimpose crosshairs showing the point of gaze on a HI-8 videotape record of
the scene camera. The scene camera sampled at a rate of 30 frames per second, and each
frame was stamped with a time code. Auditory stimuli were played to the subject through
headphones and simultaneously to the HI-8 VCR, providing an audio record of each trial.
Two different computers were used to present the visual and the auditory stimuli on each trial,
and the experimenter synchronized these two events by pressing both keyboards simulta-
neously. Note that timing measurements were made independently of the accuracy of this
synchronization because speech and eye movements were assessed directly from the video
recording. Any variability in this synchronization resulted only in slight variance in the delay
between the presentation of the pictures and the onset of the spoken instruction.

1 Each participant was actually exposed to both sets and the order of presentation of the
sets was varied between participants; however, we only analyzed the trials for the first set
presented.
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The structure of each trial was as follows: First, a 5 3 5 grid with a centered cross appeared
on the screen, and participants were instructed to look at the cross and to click on it. This
allowed the experimenter to check that the calibration of the eye tracker was satisfactory.
(Note that this instruction was given before the pictures were displayed, and participants were
not instructed to fixate the cross at any other moment during the trial). Four line-drawing
pictures and four colored geometric shapes appeared on specific cells of the grid. Participants
were seated between 40 and 60 cm from the screen; each cell in the grid subtended 3° to 4°
of visual angle, which is well within the resolution of the tracker (better than 1°). Approxi-
mately 500 ms after the pictures appeared, the spoken instruction started. The format of the
instruction was constant across all trials: Participants were first asked to pick up one of the
four pictures using the computer mouse (e.g., ‘‘Pick up the bench.’’) and then to move the
picture above or below one of the four geometric shapes (‘‘Put it above/below the circle/
square/diamond/triangle.’’). Once this was accomplished, the next trial began. The positions
of the geometric shapes were fixed from one trial to the next. The position of each picture
was randomized for each subject and each trial.

To minimize participants’ prior exposure to the pictures, we departed from the procedure
used in Allopenna et al. (1998) in two ways. First, the set of pictures was not shown to the
participants before the experiment. Second, Allopenna et al. gave participants approximately
2 s to inspect the pictures after they had appeared on the screen and before being instructed
to fixate the cross until the critical instruction began. The advantage of this procedure is that
nearly all fixations begin on the cross. However, a disadvantage is that it provides participants
with some time to inspect the pictures. With the current procedure, the delay between the
presentation of the pictures and the spoken instruction was only 500 ms, making it less likely
that participants would have time to implicitly name the pictures. Participants tended to make
an eye movement to one of the pictures as soon as the pictures were displayed; therefore they
could be fixating any of the four objects at the onset of the target word.

Data Collection and Coding

The data were collected from the videotape records using an editing VCR with frame-by-
frame controls and synchronized video and audio channels. Coders used the crosshairs gener-
ated by the eye tracker to indicate where participants were looking at each video frame (30
per s) of the test trials. Fixations were coded on each trial from the onset of the target noun
until the subject had moved the mouse cursor to the target picture. The onset of the target
word on each trial was determined by monitoring the audio channel of the VCR frame by
frame. Coders noted the onset of the instruction ‘‘Pick up the . . .’’; this time, plus the duration
of the Pick up the instruction (independently measured with a speech-waveform editor), was
identified as the onset of the target word.

For each subject and each trial, we established which of the four pictures or the cross was
fixated at each time frame, beginning at the onset of the target word. The subject’s gaze had
to remain on the object for more than one frame to be counted as a fixation. If blinking
occurred, fixation data was lost, typically for one to three frames. This time was attributed to
the previous object being fixated, which was the best inference we could make about a partici-
pant’s object of attention during a blink. Saccades from one fixation point to another were
generally performed within one time frame; in the rare cases where it took more than one
frame to reach a new object (at most two frames), the saccade time was also added to the
fixation time on the previous fixation point.

Results and Discussion

Analysis of Set A Data

For two participants, one trial was missing because of technical failures.
In order to give these participants’ data the same weight as the data for the
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other participants, fixation values for these missing trials were estimated by
using the participants’ average proportions over the remaining trials. Figure
1 presents the proportions of fixations to the target, the averaged cohort com-
petitors, and to the distractor in 33-ms time slices from 0 to 1000 ms after
target onset. As is apparent in the figure, the fixation proportions for the
target and competitors began diverging from the distractor shortly after 200
ms. The minimum latency to plan and launch a saccade is estimated to be
between 150 and 180 ms in simple tasks (e.g., Fischer, 1992; Saslow, 1967).
Moreover, saccadic eye movements are ballistic; once they are programmed,
the fixation target is fixed. Therefore, a saccade initiated at 300 ms could
only be influenced by acoustic information in the first 100 ms of a word.
Thus, 200 ms after target onset is approximately the earliest point at which
one expects to see fixations driven by acoustic information from the target
word. A one-way ANOVA conducted on the mean proportion of fixations
to the target picture, the high-frequency competitor, the low-frequency com-
petitor, and the distractor, over the time window extending from 0 to 200
ms after target onset, showed no significant difference [F1(3, 27) 5 0.11;

FIG. 1. Experiment 1: Fixation proportions over time for the target, the two averaged
cohort competitors, and the distractor on the trials from set A. Bars indicate standard errors.
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F2(3, 48) 5 0.14]. The fixations to the averaged cohort competitors were
significantly higher than the fixations to the distractor from about 200 ms
until about 500 ms, when they merged, while the fixations to the target kept
rising. A one-way ANOVA conducted on the mean fixation proportion to
the target, averaged cohort competitors, and distractor, over a time window
extending from 200 to 500 ms, revealed a significant effect of picture [F1(2,
18) 5 13.71, p , .0001; F2(2, 32) 5 6.17, p , .01]. Planned t test compari-
sons between the cohorts and the distractor fixations over the 200- to 500-
ms time window revealed a significant difference [27.3% vs 12.8%, t1(9) 5
4.14, p , .005; t2(16) 5 3.36, p , .005]. Over most of this time window,
the fixations to the target and the cohorts were similar, with no significant
difference between the cohorts and the target fixation proportion between
200 and 433 ms. This suggests that between 200 and 500 ms, the cohort
competitors were activated and competed with the target for recognition,
until the acoustic information provided disambiguation. Note that this win-
dow is narrower that the one found in Allopenna et al. (1998), which ex-
tended from 300 to 700 ms. This difference can be accounted for by the fact
that the mean overlap between the target and cohort competitor was greater
in the Allopenna et al. study (3.38 phonemes) than in the present study (2.18
phonemes).

Having established the basic ‘‘cohort’’ effect and the time interval over
which it was observed, we can now ask whether the high-frequency competi-
tor was fixated more than the low-frequency competitor over this time inter-
val. Figure 2 shows the proportion of fixations to the high- and low-frequency
competitors, along with the proportions of fixations to the target and the
distractor. As is apparent from the figure, the fixations to high- and low-
frequency competitors started diverging at about 267 ms. When saccadic
programming time and the ballistic nature of saccadic eye movements are
taken into account, this means that frequency affected eye movements as
early as the first 100 ms of the spoken word. The fixation proportion to the
target picture and to the low-frequency competitor remained comparable un-
til 467 ms after target onset (this result was expected because the frequencies
of the target word and the low-frequency competitor were similar); after this
point, the fixations to the target surpassed all other fixations. At about 467
ms, fixation proportion to both high- and low-frequency cohorts began drop-
ping, while fixation proportion to the target began rising, presumably trig-
gered by disambiguating acoustic information. The difference in fixations
between high-frequency and low-frequency competitors extended until about
533 ms, although this difference started diminishing by 467 ms. A one-way
ANOVA revealed a significant effect of picture (target, high-frequency com-
petitor, low-frequency competitor, and distractor) over the 200- to 500-ms
window [F1(3, 27) 5 8.85, p , .0001; F2(3, 48) 5 5.13, p , .005]. Over
this time window, the high-frequency competitor was fixated more than the
low-frequency competitor [31.5% vs 23.1%, t1(9) 5 1.86, p , .05; t2(16) 5
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FIG. 2. Experiment 1: Fixation proportions over time for the target, the high-frequency
cohort competitor, the low-frequency cohort competitor, and the distractor on trials from set
A. Bars indicate standard errors.

2.10, p , .05]. These results indicate that fixations to each picture varied
with the similarity between the phonological representation associated with
the picture and the sensory input as well as its lexical frequency.

We also conducted a contingent analysis by selecting the trials on which
participants were fixating either the distractor or the cross at the onset of the
target word (47 of the 168 trials, 28%). If participants happened to be looking
at the target or at one of the cohort competitors at the onset of the target
word, they may have kept fixating this picture as the spoken input unfolded,
as long as its name was consistent with the spoken input. This analysis en-
sures that any advantage observed for fixating the high-frequency cohort
over the low-frequency cohort was not influenced by where the subject hap-
pened to be fixating at the onset of the target word. Figure 3 presents the
fixation proportions for the target, each cohort competitor, and the distractor,
from 0 to 1000 ms after target onset, on this subset of the data. As is apparent
in the figure, the proportion of fixations to the high-frequency cohort was
greater than the proportion of fixations to the low-frequency cohort, and the
magnitude of the frequency effect was larger for this subset of data than for
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FIG. 3. Experiment 1: Fixation proportions over time for the target, the high-frequency
cohort competitor, the low-frequency cohort competitor, and the distractor restricted to the
trials from set A that started on the distractor or on the cross at target onset. Bars indicate
standard errors.

the full data. Variability (as indicated by the error bars) also increased be-
cause of the small number of observations included in the subset. Compari-
sons between the cohorts over the 200- to 500-ms window revealed a sig-
nificant difference by subjects [t1(9) 5 2.31, p , .05], but only a marginal
difference by items [t2(16) 5 1.37, p 5 .09]. The marginal result in the item
analysis is most likely due to the relatively few observations that remained
for each item after the trials with initial fixations to the cohort and target
pictures were removed. In general, the contingent analysis confirms that the
high-frequency competitor was fixated more than the low-frequency compet-
itor.

Thus far, we have presented evidence that frequency influences fixations
very early in the processing of the target word, as early as 267 ms after target
onset. We conducted additional analyses to firmly establish that frequency
affects lexical activation when the input is still ambiguous between several
candidates and before a single candidate could be selected based on bottom-
up input. Three phonetically trained native speakers of American English
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were instructed to determine the point, in the target word, where the signal
could unambiguously distinguish the target from its competitors (e.g., where,
in the word /bεnt∫/, they could be certain that bench, and not bed or bell, was
heard). Using a speech editor, they selected increasingly larger fragments of
the target word until they reached a point where the target could be identified
and the competitors rejected. The names of the targets and competitors were
provided beforehand. This procedure provided, for each of the 17 items, an
estimate of the uniqueness point (with respect to the other alternatives present
on the display). The uniqueness-point estimates were quite similar across
judges and correlated highly (mean r 5 .83); they were thus averaged.
The mean uniqueness point was 237 ms (ranging from 128 to 352 ms).
Uniqueness-point estimates allowed us to test whether frequency effect oc-
curred as soon as candidates were activated (i.e., before the uniqueness
point), as predicted by a frequency mechanism operating very early, or when
only one candidate matched the signal (i.e., after the uniqueness point), as
predicted by a late response-bias account.

For each of the 17 items, we computed the mean proportion of fixation
to the high-frequency and low-frequency competitors over two time win-
dows: (1) over the time window extending from the onset of the target word
plus 200 ms to the uniqueness point plus 200 ms—the window where fixa-
tions could plausibly be affected by signal information from target onset up
until the uniqueness point; and (2) over the time window extending from
the uniqueness point plus 200 ms to the target offset plus 200 ms—the win-
dow where fixations could have been influenced from signal information
coming at or after the uniqueness point. On average, the high-frequency com-
petitor was more likely to be fixated than the low-frequency competitor, for
each time window (32% vs 24% for the preuniqueness point window and
19% vs 13% for the postuniqueness point window). A two-way (window 3
competitor frequency) ANOVA revealed a significant effect of competitor
frequency [F(1, 16) 5 4.7, p , .05] and of window [F(1, 16) 5 29.5, p ,
.0001] and no significant interaction (F , 1). This demonstrates that the
frequency effect was not limited to the postuniqueness point window, as
predicted by a late response bias account of frequency, but was already pres-
ent in the preuniqueness point time window.

Analysis of Set B Data

In this set, both cohort pictures were presented along with a phonologically
unrelated target (e.g., the cohort pictures bed and bell were presented along
with the target mushroom). Fixations to these pictures as the target word
was heard should have been triggered by the visual characteristics of the
pictures only, since their names were phonologically dissimilar to the target.
For two participants, a few trials were missing because of technical failures
(one for one participant and two for the other participant). Figure 4 presents
the fixation proportion over time for the target, the high- and low-frequency
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FIG. 4. Experiment 1: Fixation proportions over time for the target, the high-frequency
cohort item, the low-frequency cohort item, and the distractor on the trials from set B. Bars
indicate standard errors.

cohort items, and for the distractor. Fixations to both cohort items and to
the distractor steadily decreased while fixations to the target increased as the
target word was heard. Crucially, in the 200- to 500-ms window, the fixation
proportion for the high-frequency cohort item did not surpass that for the
low-frequency cohort item—in fact, the low-frequency cohort item showed
a small advantage over its high-frequency counterpart, although the differ-
ence was not reliable [t1(9) 5 1.22, p . .10; t2(16) 5 1.19, p . .10). Thus,
the analysis of the set B trials indicated that the visual characteristics of the
pictures cannot account for the advantage for fixating high-frequency cohort
items observed in set A. The effect can thus be attributed to the influence
of lexical frequency on cohort activation.

Experiment 1 revealed three central results. First, it confirmed that the
fixations to targets and competitors are tightly time-locked to the unfolding
acoustic input, as demonstrated in Allopenna et al. (1998). Recall that in our
study (as opposed to that of Allopenna et al.), participants had no exposure
to the pictures prior to the experiment and quite limited exposure (500 ms)
to the four pictures prior to the spoken instruction during each trial. Thus,
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the time locking is not a consequence of extensive exposure. Second, the
results showed that the probability of fixating a competitor that shares phono-
logical similarity with the target word are further influenced by the competi-
tor’s lexical frequency in the language. Even though the display limited po-
tential responses to four alternatives (i.e., four pictures), an effect of word
frequency was still observed (at least under conditions where the exposure
to the pictures was limited). Finally, the timing of the frequency effect sheds
light on the locus of frequency effects in word processing. The fixations to
the high-frequency cohort competitor started diverging from the fixations to
the low-frequency cohort competitor as early as 267 ms after target-word
onset, reflecting fixations that were programmed within the first 100 ms of
the beginning of the word, and while the input was still ambiguous among
multiple lexical alternatives (i.e., prior to the uniqueness point). We thus see
an effect of word frequency as early as it can be observed. This is incompati-
ble with a view of word frequency operating as a late response bias after
lexical access is complete.

Simulations

An important advantage of the eye-tracking paradigm is that hypothetical
lexical activations can be mapped onto fixation proportions using an explicit,
well-motivated linking hypothesis (Allopenna et al., 1998), allowing for
quantitative tests of alternative models. In order to evaluate the various ac-
counts of frequency and their fit to our data, we implemented frequency in
the TRACE model (McClelland & Elman, 1986). We chose TRACE because
it is a well specified and implemented model of spoken-word recognition
and is publicly available. It accounts for a wide variety of phenomena
(McClelland & Elman, 1986), including the time course of fixation probabili-
ties in tasks like ours (Allopenna et al., 1998). TRACE shares several impor-
tant basic properties with other current models of spoken-word recognition.
Words are activated incrementally as an input sequence unfolds, proportion-
ally to their similarity with the input, and activated words compete for recog-
nition.

TRACE is an interactive activation network composed of three levels.
Input arrives in the form of idealized, pseudospectral representations of fea-
tures over time. The featural nodes have excitatory connections to appro-
priate phoneme nodes. Phoneme nodes in turn excite appropriate lexical
nodes. Competition is implemented via lateral inhibitory connections within
the phoneme and lexical levels. In addition, lexical nodes feed back via excit-
atory connections to the phonemes they are connected to. (Feedback connec-
tions also exist from phonemes to features, but the weights of these con-
nections were set to 0 in McClelland & Elman, 1986, as well as in our
simulations.) Input arrives in featural slices, with phonemes having durations
of 11 slices. Because phonemes are centered 6 slices apart, input slices corre-
sponding to a phoneme overlap with slices corresponding to the preceding
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and following phonemes. Activation spreads forward through the network
from feature to phoneme to lexical nodes, after each input slice (with a 1-
slice lag for word-to-phoneme feedback).

We compared three different implementations of frequency: frequency
operating on resting-activation levels, frequency operating on connection
weights, and frequency applied in a postactivation decision rule, as suggested
by Luce and colleagues in the NAM (Goldinger et al., 1989; Luce, 1986;
Luce & Pisoni, 1998). In each of these simulations, frequency is viewed as
a central component of lexical access; that is, frequency plays a role as soon
as lexical candidates become active (this is described in more detail below).
The simulations were compared to simulations that did not incorporate fre-
quency. These simulations had three goals. The first goal was to determine
whether simulations with frequency would provide a better account for the
data than simulations without frequency. Note that achieving better fits with
frequency as a factor is not trivial because (a) phonological similarity ac-
counts for most of the variance and (b) we are not using frequency as a free
parameter; rather, we are using theoretically motivated hypotheses about
how frequency affects activations to generate activation-driven predictions.
The second goal was to use explicit implementations to determine what dif-
ferent predictions, if any, competing frequency accounts make about the time
course of lexical activation. If significant differences arose, the third goal
was to determine which frequency model best fits the data.

We used the publicly available implementation of TRACE.2 We aug-
mented the 235-word lexicon included with the distribution with approxima-
tions to all of the target and cohort stimuli (but not the distractors) from
Experiments 1 and 2.3 (Distractors were chosen from unrelated items in the
lexicon.) We added 51 words for Experiment 1 and 17 words for Experiment
2, resulting in a 303-word lexicon.

2 This is available from Jeff Elman at the UCSD Center for Research in Language via
anonymous ftp at ftp://crl.ucsd.edu/pub/neuralnets/. Note that the parameter set included in
this implementation was changed to match those reported by McClelland and Elman (1986)—
with the exception of the frequency-scale parameter, which we varied in the simulations re-
ported here. These parameters are reported in Appendix B.

3 Because TRACE only incorporates a subset of English segments (the vowels /ɒ, u, i, ö/
and the consonants /b, p, d, t, g, k, s, ʃ, ɹ, d, l/), many of our stimuli could only be approxi-
mately transcribed. We tried to choose similar segments for substitutions without overusing
any segment. We made no attempt to use transcription choices as free parameters. We tran-
scribed the words only once and did not tweak our transcriptions to drive the performance of
the model, with three exceptions: /tö/, /kö/, and /böl/ (original TRACE transcription for toe,
cow, and bell, respectively). Because many words contain these syllables, these items did not
become the most active items given appropriate input. We retranscribed the first two as /töö/
and /köö/, which approximates the fact that word-final vowels are lengthened in English, and
allowed them to become the most activated words in response to appropriate input. We
changed the vowel used for bell and bed to /i/ (transcribed as /bil/ and /bid/), which placed
those items in a sparser neighborhood. Our transcriptions are listed in Appendices A and C.
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Frequency in resting levels. The approach usually taken in interactive acti-
vation models is to make resting levels proportional to frequency (McClel-
land & Rumelhart, 1981). On this approach, each unit has a functional bias
associated with it, such that high-frequency items have a head start in the
form of higher activation in the absence of bottom-up input and their activa-
tions decay slightly more slowly. The TRACE implementation includes a
method for incorporating frequency, but so far as we know, this aspect of
the model has not been explored previously. In all the published reports we
are aware of, frequency was turned off by setting the frequency-scale param-
eter to zero. However, a nonzero frequency value can be specified for each
lexical item, which affects its resting-activation level. Resting level is deter-
mined by Eq. (1) as follows:

ri 5 R 1 s[log10(c 1 fi)] 1 pi, (1)

where ri is the resting activation for unit i, R is the default resting activation,
s is the frequency-scaling constant; fi is the frequency of item i (number of
occurrences per million words reported by Francis & Kučera, 1982; items
not included in that corpus were given frequencies of 1), c is a constant that
prevents taking the log of 0 or 1 and can also decrease the initial slope of
the log transform (we set c to 1.0 for this method, so there was little ef-
fect on the slope), and pi is a top-down factor (intended, for instance, for
semantic-priming simulations) which was set to 0 for all our simulations.

Our initial explorations of this frequency implementation revealed two
main constraints. First, if resting values are greater than 0, the activations
of lower frequency items will be driven toward the minimum possible activa-
tion value by higher frequency nodes, even in the absence of bottom-up
information. This is because units with positive activation can inhibit other
units within the same layer. Therefore, in order for frequency biases to have
a stable effect, even items with the highest frequencies must not have resting
levels greater than 0. This means that the default resting level R has to be
set sufficiently low that the frequency-scaling constant s can be set high
enough to achieve a wide range of resting levels less than 0. We did two
things to accomplish this. First, we set a ceiling for frequency values: Items
with a frequency greater than 1000 were treated as having a frequency of
1000 (only eight items in the TRACE lexicon were affected, none of which
were among our stimuli). Second, we set the default resting level R to 20.3.
(We changed the TRACE implementation to report activations less than 0;
note that our results could not be replicated without making this change.)
This combination allowed a maximum value of 0.1 for the frequency-scaling
constant s, which would give the highest frequency items resting levels of
0. We determined that a value of .06 gave the best balance of fits to the data
from Experiments 1 and 2 with this method.
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We converted activations to response probabilities using the Luce choice
rule (R. D. Luce, 1959).4 Activations, a, are converted to response strengths,
S, as shown in Eq. (2), where k is a constant that determines the amount of
separation between strengths. We set k to 7 for all of the simulations we
report, as this was the fixed value that Allopenna et al. (1998) used to fit
similar data. The exponential transformation in Eq. (2) ensures that no values
are negative and amplifies large activation values. Response probabilities for
each item, P(Ri), are simply normalized response strengths, as shown in Eq.
(3) as follows:

Si 5 ekai (2)

P(Ri) 5
Si

^
n

j51

Sj.

(3)

Note that the conversion to response probabilities embodies a simple as-
sumption about the role of visual information in our task. Activations are
generated in a bottom-up fashion on the basis of phonetic input. All lexical
items enter into the activation and competition process. However, since only
four responses are possible given the visual display, only the four displayed
items enter into the decision rule. We refer to this method as RDLREST because
it uses the R. D. Luce choice rule to evaluate activations with frequency
instantiated in resting levels. We refer to simulations without frequency as
the RDLNO FRQ method.

Allopenna et al. (1998) used an additional step that scaled response proba-
bilities to be proportional to the total amount of activation among the four

4 Determining activations from TRACE is not a trivial process. Word units in TRACE func-
tion as templates. For a word unit to become highly active, it must be well aligned with
phonemic (and featural) inputs. TRACE avoids the alignment problem by aligning a copy of
each word unit every three input slices. Given input, TRACE reports the activity of copies
of each word unit aligned at different slices. The experimenter must decide how to decode
the word-unit patterns of activation. The method we used was to determine which copy of a
word unit reached the highest activation and then use the activation of that unit over all input
cycles as the activation of that word. We assume McClelland and Elman (1986) used a similar
method when they examined activations for their simulations. They reported activations or
response probabilities based on units aligned with a particular slice of the input, although they
did not explicitly discuss how they chose that slice (see Frauenfelder & Peeters, 1998, for the
description of a similar method). This procedure is problematic because it cannot be imple-
mented in an incremental fashion; it requires an omniscient observer to compare peak activa-
tions after processing is finished. Incremental methods are possible. Each lexical item could
have an associated decision node that would either summate the responses of all copies of
the word template at all slices or report the activation of the most active word template at
each slice. For the purposes of the current article, we use the simple method we have described
and leave this issue open for future research.
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possible visible targets at each time slice. This was necessary because in
the Luce choice rule, given equivalent activations, the minimum response
probability for any item is 1/n, where n is the number of possible responses.
Allopenna et al. instructed participants to fixate a central fixation cross imme-
diately before the critical instruction was heard, with the result that the fixa-
tion proportions at the onset of target words were almost always 0 for all
objects (since participants were fixating the central cross). For the current
experiment, we did not give participants any explicit instructions regarding
fixations. Participants were thus about equally likely to be fixating any pic-
ture in the display at the onset of target words. Thus, the basic choice rule,
which assigns response probabilities of 1/n in the absence of bottom-up in-
put, maps perfectly onto our task.

Frequency in connection weights. Another way to incorporate frequency
in interactive activation models, advocated by MacKay (1982, 1987), is to
make the weights (or connection strengths) associated with lexical units pro-
portional to their frequency. Although implementations of frequency in rest-
ing levels or in connection weights are very similar to each other (e.g., Dell,
1990), our simulations show that the two implementations differ in one cru-
cial respect. In order to implement frequency in the connection weights, we
scaled phoneme-to-word input according to lexical frequency according to
Eq. (4) as follows:

a′
pi 5 api[1 1 (apis[log10(c 1 fi)])], (4)

where api is the activation to lexical unit i from phoneme p. We found that
a value of .13 for s achieved the best balance of fits for the data from Experi-
ments 1 and 2, and c was set to 1.0. Note that with frequency implemented
in connection weights, the scaling factor s is not constrained in the same
way as for frequency implemented in resting levels, since units remain at
the same default resting level until they receive bottom-up input. Activations
were converted to response probabilities using the Luce choice rule as in the
resting-level method. We refer to this method as RDLWT.

Frequency in the decision rule. The final method used to incorporate fre-
quency was based on the principles of the NAM. In this model, units corre-
sponding to acoustic-phonetic patterns are activated on the basis of bottom-
up input. These pattern units connect to decision units, which correspond to
different lexical items. Decision units compute the Stimulus Word Probabil-
ity (SWP) for their corresponding lexical item on the basis of the bottom-
up pattern input (that is, the probability that the lexical item is being heard
given the current input). They also have access to higher level lexical infor-
mation, such as word frequency, and have access to the summed SWPs for
all other lexical items. Based on these input sources, decision units compute
the probability of identifying their corresponding word according to Eq. (5)
as follows:



338 DAHAN, MAGNUSON, AND TANENHAUS

P(ID) 5
SWPi fi

^
n

j51

SWPj fj,

(5)

where i is the lexical item corresponding to the decision unit, fi its frequency,
and the denominator is the summed frequency-weighted SWPs for all items,
including i.5 Note the similarity between Eqs. (3) and (5); Eq. (5) would be
a frequency-weighted variant of the R. D. Luce (1959) choice rule if TRACE
response strengths were used as SWP estimates. While Luce (1986) and Luce
and Pisoni (1998) used segmental confusion matrices to estimate SWPs, they
also suggested that a TRACE-like interactive activation system could form
the front-end to the NAM, such that SWPs would correspond to activations.
A key difference in such an implementation compared to the standard
TRACE model is the locus of frequency effects. When frequency is incorpo-
rated into the activation component of an interactive activation model like
TRACE, its effects percolate throughout the system. In contrast, if frequency
only comes into play at a postactivation decision stage, its effects will be
confined to this decision stage, and Goldinger et al. (1989) predicted that
these two implementations ought to have very different results. The ramifi-
cations of the two implementations are complex enough that simulations are
called for to test in what ways they are different. In order to implement a
decision rule that incorporates frequency independently of activations, we
simply used TRACE activations (without frequency) as estimates of SWPs.
This is equivalent to frequency-weighting response strengths, as in Eq. (6)
as follows:

Si 5 SWPi 5 ekai [log10(c 1 fi)], (6)

where ai is the activation of the lexical unit for word i, fi is its frequency,
and c is a constant. Unlike the other simulation methods, we found that fits
were substantially improved by manipulating the parameter c. A value of
15 was used for c for both experiments (making c larger improves the fit
for Experiment 2, but decreases the fit for Experiment 1). Alternatively, one
could use a frequency scaling parameter to control the influence of frequency
in Eq. (6). However, scaling f by values greater than 1 has similar effects
as increasing c, and values less than 1 have the undesirable effect of making
the log-transform more linear. Response strengths were converted to re-
sponse probabilities using Eq. (3). We refer to this simulation method as the

5 Note that Luce and his colleagues usually separate the SWP of item i from the SWPs of
the phonological neighbors of this item, which they denote as NWPs (neighbor-word probabili-
ties). Without an a priori way of dividing the lexicon into neighbors and nonneighbors, it is
simpler to refer to the SWPs of every word given the current input (most will approach 0).
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RDLPOST method because it is the Luce choice rule with frequency applied
at the ‘‘postactivation’’ stage.

Note that this implementation is somewhat inconsistent with the way the
NAM has been described by Luce and colleagues. According to Goldinger
et al. (1989), in the NAM, ‘‘the effects of frequency are not realized until
the selection phase of the recognition process [. . .] frequency is assumed
to exert its influences after initial activation but before lexical access occurs’’
(p. 504). Thus, frequency should not come into play during the initial pro-
cessing, whereas in our implementation, frequency comes into play immedi-
ately, given nonzero activation. We did not implement a staged application
of frequency of this sort. However, we can infer from the results of the
RDLNO FRQ (without frequency) and RDLPOST simulations what the results of
such an implementation would be: Early on, a system with a late-acting
frequency mechanism would resemble TRACE without frequency, i.e.,
RDLNO FRQ. Once some sort of threshold were reached (e.g., one or more
items crossed an activation threshold), frequency would come into play, and
the results would resemble RDLPOST from that point onward.

Simulation results. We conducted our simulations by presenting each tar-
get word to TRACE, one at a time. All lexical items were allowed to com-
pete. Figure 5 shows the raw TRACE activations averaged over all the stimu-
lus items. In the top panel, activations are shown with no frequency influence
(activation for the high-frequency and the low-frequency competitors are
thus identical); in the middle panel, frequency is incorporated into resting
activations; and in the bottom panel, frequency is incorporated into connec-
tion weights.6

We then computed response probabilities for each of the four methods
(RDLNO FRQ, RDLREST, RDLWT, and RDLPOST). A crucial issue was how to map
cycles onto real time. We used stimulus length to equate simulation time
and real time. Our stimuli for Experiment 1 had a mean duration of 498 ms.
Our stimuli, as represented in TRACE, had a mean duration of 40.1 cycles.
If we equate stimulus time between our natural speech and TRACE represen-
tations, each cycle would be equivalent to 12.4 ms. Given that we sampled
eye movements at 30 Hz (i.e., every 33.33 ms), we aligned cycles to millisec-
onds by linearly interpolating 11 intermediate steps between cycles (making
each new cycle equivalent to 1.03 ms) and then downsampling to every 32nd
point. Thus, each downsampled cycle corresponded to 33.12 ms. Allopenna
et al. (1998) were able to equate 1 cycle to 11 ms, and, therefore, 3 cycles
to one video frame, because their talker had a slightly faster speech rate.
Note that it is quite remarkable that the temporal dynamics of TRACE allow
such a principled method for equating simulation time and real time.

6 Activations vary from 2100 to 100 because TRACE multiplies the output values by 100.
Before computing response probabilities, we multiplied the activations by .01 to convert them
back to a scale varying from 21 to 1.
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FIG. 5. Experiment 1 simulations: TRACE activations over time for the target, the high-
and low-frequency competitors, and the distractor when frequency is turned off (top), when
frequency is coded in resting activations (middle), and when frequency is coded in connection
weights (bottom).
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Another important issue is how to align simulation points and data points.
Allopenna et al. (1998) added six extra frames of no activation to the begin-
nings of their simulations, which they equated with the time it takes to plan
and launch an eye movement. We found that our various simulation meth-
ods required slightly different alignments for optimal fits to the data, so we
treated alignment as a free variable (two extra frames of no activation were
added for RDLPOST, three for RDLREST and RDLNO FRQ, and four for RDLWT;
however, this only gave an average improvement of .07 in r2 compared to
direct alignment).

In Fig. 6, activations have been transformed into response probabilities
for each of the four simulation methods (RDLNO FRQ, RDLREST, RDLWT, and
RDLPOST).

Table 1 shows the root mean squared (RMS) error between the data and
simulation methods computed over two different windows: all data points
from 0 to 1000 ms and from 200 to 500 ms (the region where reliable cohort
effects were observed in the data). RMS error gives a measure of the absolute
fit. The means for each item are shown to help interpret the RMS values.
(Since RMS is an absolute measure, an RMS of 0.1 could be quite good for
data with a mean near 1.0, but could be quite poor for data with a mean near
0.) Table 2 shows the corresponding r2 values. In addition, RMS and r2 val-
ues computed on the difference between high- and low-frequency cohorts
are reported in each table. We included this measure because all of the meth-
ods yielded relatively small RMS and large r2 values, suggesting a good fit
with the data. For RMS, this was because the frequency-based differences
we observed were relatively subtle (even the no-frequency method yielded
RMS values comparable to the other methods for the high- and low-fre-
quency items). For r2, this was because the differences from time step to
time step are important. To achieve a high r2 value, the simulated data points
must show decreases and increases proportional to those found in the data.
Taking a difference score allows us to make a stronger test: Do the simulated
data points also capture the differences between high- and low-frequency
competitors? We thus concentrate on these values when comparing the dif-
ferent simulations.

As is apparent in Tables 1 and 2, the RDLNO FRQ method did not fit the
data as well as the other methods, especially in terms of the difference be-
tween high- and low-frequency competitors in the 200- to 500-ms region.
The RMS is about twice as great as that for the other methods, and this
implementation provides no correlation with the data over time. All the other
methods fit the data well. The differences in fixation probabilities between
the high- and low-frequency competitors are shown in Fig. 7. As can be
seen in the figure, all three methods incorporating frequency provide similar
predictions. The main difference is in the initial difference predicted by the
RDLWT method. With this method, frequency effects are proportional to acti-
vation in the system. Prior to substantial bottom-up input, no frequency dif-
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FIG. 6. Experiment 1 simulations: Fixation probabilities over time for the target, the high-
and low-frequency competitors, and the distractor for each of the four frequency implementa-
tions (see text).

ference is predicted. As more input arrives, the frequency difference gradu-
ally increases. The other two frequency methods, RDLREST and RDLPOST,
predict a frequency bias, even with little bottom-up activation. Thus, the
RDLWT method is able to capture one significant feature of the data that the
others cannot: a frequency effect with a gradual onset, modulated by bottom-
up activity. It is in this respect that the resting-level and connection-strength
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TABLE 1
RMS Measures of Model Fits to Experiment 1 for the Target, the High-Frequency (HF)

and the Low-Frequency (LF) Cohort Competitors, and the Distractor, on the 0- to 1000-ms
(All) and the 200- to 500-ms (Section) Windows

Mean Item RDLNO FRQ RDLREST RDLWT RDLPOST

.514 Target (All) .117 .093 .090 .103

.278 Target (Section) .081 .038 .075 .043

.182 HF Cohort (All) .044 .053 .027 .055

.310 HF Cohort (Section) .037 .040 .022 .048

.148 LF Cohort (All) .038 .033 .031 .033

.232 LF Cohort (Section) .053 .031 .029 .028

.125 Distractor (All) .070 .076 .062 .076

.135 Distractor (Section) .069 .072 .057 .074

.049 HF–LF (All) .056 .069 .037 .069

.080 HF–LF (Section) .086 .044 .029 .048

Note. Means for the data are shown in the leftmost column to guide interpretation of the
RMS values.

implementations are not simple variants of each other; only the connection-
weight implementation gives rise to a gradual (although still immediate and
fast) onset of frequency.

All of the implementations that we have evaluated thus far assume that
frequency applies early in the recognition process. However, one might de-
fend a model in which frequency comes into play when the system is prepar-
ing to generate a response, that is, after lexical access and prior to generating
an eye movement. This would be consistent with the late-acting response
bias argued for by Connine et al. (1993). The argument would be that even
when activation levels are low, there is still a small probability that activation

TABLE 2
r2 Measures of Model Fits to Experiment 1 for the Target, the High-Frequency (HF) and
the Low-Frequency (LF) Cohort Competitors, and the Distractor, on the 0- to 1000-ms

(All) and the 200- to 500-ms (Section) Windows

Item RDLNO FRQ RDLREST RDLWT RDLPOST

Target (All) .955 .969 .965 .969
Target (Section) .969 .963 .969 .968
HF Cohort (All) .909 .931 .961 .931
HF Cohort (Section) .606 .590 .638 .631
LF Cohort (All) .942 .923 .940 .923
LF Cohort (Section) .263 .091 .759 .090
Distractor (All) .754 .761 .795 .756
Distractor (Section) .672 .652 .691 .667
HF–LF (All) .015 .106 .491 .139
HF–LF (Section) .008 .342 .550 .475
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FIG. 7. Experiment 1 simulations: Fixation-probability differences between the high- and
the low-frequency competitors over time for the data and each of the four frequency implemen-
tations (see text).

of a lexical alternative will cross a response threshold. Frequency would then
operate as a constant bias and apply to lexical candidates that cross threshold.
The RDLPOST method could be easily adapted to do something like this, e.g.,
by only allowing frequency to weight response strengths after a certain num-
ber of cycles of processing or when activations surpass a threshold. The
result would resemble pasting the RDLNO FRQ and RDLPOST results together:
Prior to the point at which frequency applied, this ‘‘late’’ method would
look exactly like the RDLNO FRQ method. From the point at which frequency
applied, it would look exactly like RDLPOST, with a sudden jump between
the two patterns. However, there is no motivation to implement such a mech-
anism. Because frequency has a gradual and early onset in our data, there
is no basis to prefer a late-acting, sudden-onset frequency bias. Moreover,
modifying the postaccess model to assume that lexical access can take place
as early as would be necessary to accommodate our data would clearly vio-
late the spirit of the postaccess hypothesis: The threshold for generating a
response after lexical access would have to be so low as to be indistinguish-
able from a model without a threshold.
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Summary and Conclusions

Experiment 1 demonstrated that fixations to objects in the visual set that
share phonological similarity with the sound pattern of the target word are
affected by the frequency with which the names of the objects occur in the
language. When both high-frequency and low-frequency cohort competitors
were present, participants were more likely to fixate the high-frequency com-
petitor than the low-frequency competitor. Furthermore, the difference in
fixations between high- and low-frequency competitors was observed very
early, when the acoustic signal was still lexically ambiguous. The results are
consistent with predictions from models in which frequency affects lexical
access as soon as lexical items are activated by bottom-up input. The TRACE
model accounted for a large proportion of the variance in the time course
of fixation probabilities, regardless of whether frequency was implemented
in resting activation levels, connections weights, or as a bias applied continu-
ously to (but independently of ) activations (although the connection weight
method yielded the best quantitative and qualitative fits).

EXPERIMENT 2

Experiment 2 was conducted to determine whether it was possible to ob-
serve an effect of target frequency when none of the other pictures had names
that were phonologically related to the name of the referent. Demonstrating
a frequency effect on target fixations, with no competitor pictures with names
phonologically similar to the target’s in the display, is important because it
would provide a replication of the frequency effect using a different measure
and would allow us to further evaluate the mechanism by which frequency
operates during lexical processing. Moreover, finding such an effect on target
fixations would be inconsistent with the possibility that participants adopt a
verification strategy (i.e., naming the visually present objects prior to the
spoken instruction and then matching the sound pattern of the target word
with the preactivated names). This verification strategy could account for
the frequency difference on fixations to cohort competitors in Experiment 1
by assuming that frequency biases the storage and/or retrieval of the preacti-
vated names. However, because no frequency effect was found on fixations
to the competitors in the set B data (when the target name did not overlap
with the cohorts’ names), one would also have to assume that the frequency
bias in the verification strategy only applies to names that match the tar-
get word. In Experiment 2, a referent picture was presented along with
three pictures with phonologically unrelated names. The name of the referent
was either low-frequency or high-frequency. Assuming that high-frequency
words are activated faster than low-frequency words, and that fixations are
influenced by lexical activations, we predicted that participants would fixate
the high-frequency referent picture (before clicking on it with the mouse)
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faster than the low-frequency referent picture. A verification strategy would
not predict such a difference; both high-frequency and low-frequency refer-
ent pictures should be fixated equally fast because in both conditions, the
target picture is the only visually present picture whose name matches the
target word.

Method

Participants

Eighteen students at the University of Rochester participated in this experiment and were
paid $7.50. None of them had participated in Experiment 1.

Materials

The materials consisted of 21 pairs of phonologically similar words which differed in lexical
frequency according to the Francis and Kučera (1982) counts (e.g., bell has a frequency of
23 per million and bed a frequency of 139 per million). We were unable to find pairs of words
for which one item was very low in frequency and the other very high. However, we made
sure that there was a large frequency difference between each item of the pair. The mean
frequency of the high- and low-frequency items was 104.0 per million and 14.4 per million,
respectively. Each pair was associated with three phonologically unrelated distractors (e.g.,
sock, headphones, and knife). The complete set of materials is presented in Appendix C. On
a given trial, either the low-frequency or the high-frequency item was presented along with its
three distractors. In addition to the 21 pairs and their distractors, 16 sets of four phonologically
unrelated items were constructed to serve as filler trials. Two lists were constructed by varying
whether the high-frequency or the low-frequency item of each pair was the target. Nine partici-
pants were randomly assigned to each list. For each list, three random orders were created;
approximately the same number of participants were assigned to each order.

The 169 [(21 3 5) 1 (16 3 4)] pictures were selected from the Snodgrass and Vanderwart
(1980) and the Cycowicz, Friedman, Rothstein, and Snodgrass (1997) picture sets as well as
from children’s picture dictionaries and a commercially available clip-art database; all were
black-and-white line drawings.

Before we could conclude that a frequency effect on target fixations was specifically caused
by differences in lexical frequency between the two sets of words, we needed to rule out the
possibility that a frequency effect might result from differences in object-recognition perfor-
mances or in name agreement. For instance, people might fixate the pictures associated with
low-frequency names more slowly than pictures associated with high-frequency names be-
cause the pictured representations of the low-frequency items were harder to recognize or
because the words used to refer to the pictures with low-frequency names were less commonly
associated with these pictures than were the words and the pictures with high-frequency names.
Therefore, we conducted two control experiments. In the first experiment, participants made
a speeded semantic categorization on the pictured objects that did not require them to generate
item names (i.e., is the pictured object natural or artifact). In the second experiment, they
generated a name. The details of these experiments are presented in Appendix D. The results
showed no evidence that the pictures of the high-frequency items were recognized more rapidly
or named more accurately than the pictures of the low-frequency items. (In fact, the picture-
recognition experiment revealed a small bias in favor of the low-frequency item pictures.)
Thus, faster fixations to the pictures with higher frequency names could not be attributed to
characteristics of the pictures.

The spoken instructions were recorded by a female native speaker of English in a soundproof
room, sampling at 22,050 Hz. The average duration of the target word was 625 ms for the
high-frequency items and 632 ms for the low-frequency items.
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Procedure

As in Experiment 1, participants were seated at a comfortable distance with the computer
screen, and their eye movements were monitored as they followed the spoken instructions.
The structure of each trial was as follows: First, a 5 3 5 grid with a centered cross appeared
on the screen, and participants were instructed to look at the cross and to click on it. Then
four line drawings and four colored geometric shapes appeared on specific cells of the grid.
Immediately after the pictures appeared, the spoken instruction started. Because we wanted
to analyze the time it took participants to direct their attention to and fixate the target picture,
we attempted to minimize the probability for participants to be already fixating the target
picture at target onset. The instruction was thus composed of two parts. First, participants
were asked to point to one of the distractor pictures using the computer mouse (e.g., ‘‘Point
to the sock’’). After a delay of 300 ms to allow participants to move the mouse cursor to the
distractor picture, they were instructed to point to the target picture (e.g., ‘‘now the bed’’).
Then they were asked to move the target picture above or below one of the geometric shapes
(e.g., ‘‘Click on it and put it above the circle’’). Once this was accomplished, the next trial
began. By asking participants to point to one of the distractor pictures immediately before
pointing to the target picture, we minimized the proportions of trials where subjects were
fixating the target picture at the onset of the target word. On 14 of the 16 filler trials, subjects
were instructed to click on and move the first picture they pointed to (e.g., ‘‘Point to the
balloon. Click on it, and put it below the square’’). This was intended to ensure that people
directed their attention to the first picture. The positions of the geometric shapes were fixed
from one trial to the other. The position of each picture was randomized for each subject and
each trial.

Results and Discussion

The coding procedure was identical to that described for Experiment 1.
Fixations were coded from the onset of the target word until participants
fixated the target picture and initiated a mouse movement to point to it. One
trial was discarded because the participant pointed to the picture without
fixating it. Overall, people made 2.14 fixations on average before reaching
the target picture, 2.13 fixations when the target was high-frequency, and
2.14 fixations when the target was low-frequency. For 6 trials (1.6% of the
data), participants were already fixating the target picture at the onset of the
target word; these trials were removed from the subsequent analyses. The
delays between the onset of the target and the onset of the last fixation,
always to the target, were analyzed after excluding the trials where this delay
was less than 200 ms or greater than or equal to 1300 ms. Fixations occurring
before 200 ms were assumed to have been programmed before the onset of
the target word; trials where participants took more than 1300 ms to fixate
the target were treated as outliers. In total, 19 trials (5% of the data) were
excluded (12 with low-frequency targets and 7 with high-frequency targets).

On average, the pictures corresponding to high-frequency items were
fixated faster than those corresponding to low-frequency items (563 ms vs
625 ms). Planned comparisons revealed that this difference was reliable
[t1(17) 5 3.26, p , .005; t2(20) 5 1.99, p , .05]. The proportions of fixations
to the high-frequency and low-frequency targets over time are shown in Fig.
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FIG. 8. Experiment 2: Fixation proportions over time for the high-frequency and low-
frequency targets. Bars indicate standard errors.

8. At 400 ms after target onset, the proportion of fixations to the high-
frequency target surpassed the proportion of fixations to the low-frequency
target, indicating that participants fixated the high-frequency target earlier
than the low-frequency target. Again, this result reveals the influence of fre-
quency very early in the word-recognition process, given the delay to pro-
gram and launch an eye movement. The fixation analysis confirms what the
analysis on latencies showed: The pictures associated with high-frequency
items were fixated faster than the pictures associated with low-frequency
items. This result is difficult to reconcile with an account that participants
in our experiments adopted a special verification strategy based on fre-
quency. We discuss the implications of this result for the eye-tracking para-
digm in more detail under General Discussion. We also discuss additional
empirical evidence that demonstrates that word recognition in the eye-
tracking paradigm does not bypass normal lexical processing.

Simulations

The same procedures were used in the present simulations as were used
for Experiment 1. However, for each pair of high- and low-frequency targets,
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each target word was presented as a separate input to TRACE. Three dis-
tractors with similar frequencies to those for the distractors used in the exper-
iment were chosen from the TRACE lexicon. The same three distractors were
used for both members of each pair. Figure 9 presents the overall activation
patterns. In the top panel, average high- and low-frequency target activations
are shown when frequency was not used. The middle panel shows the corre-
sponding averages observed when frequency was incorporated in resting ac-
tivations (frequency scaling constant s 5 .06), and the bottom panel shows
the results when frequency was incorporated in phoneme-to-word connection
strengths (frequency scaling constant s 5 .13). Note that there was a slight
advantage for high-frequency items when frequency was not included. This
was due to differences in neighborhoods among the items. However, the
additional difference due to the effect of frequency was clearly substantial.

In contrast to Experiment 1, the task used in Experiment 2 was similar to
that used by Allopenna et al. (1998). While Allopenna et al. used explicit
fixation instructions to ensure that subjects fixated a single location at target
onset, we devised task constraints that made it likely that subjects would not
be fixating the target picture at the onset of the target word (i.e., by asking
them to point to a distractor picture before the critical instruction). Therefore,
for Experiment 2, an additional method for computing response probabilities
was included: the scaled Luce choice rule used by Allopenna et al. As dis-
cussed above, the simple form of the Luce choice rule predicts that for equiv-
alent response strengths (even when all are 0), the minimum response prob-
ability is 1/n, where n is the number of possible responses. In order to
approximate a context in which task constraints dictate nonuniform probabil-
ities for all responses (e.g., when subjects are instructed to fixate a particular
item or to make a visually guided movement to an object other than the
target prior to the critical instruction), Allopenna et al. scaled activations as
a function of activation in the current time slice relative to the maximum
activation observed during processing, using the scaling factor shown in Eq.
(7), where max(at) is the maximum activation in time slice t, and max(a) is
the maximum activation observed during all time steps:

∆ 5
max(at)
max(a)

. (7)

We incorporated this into our choice rule simply by multiplying response
strengths by the scaling factor prior to computing response probabilities. We
refer to response probabilities computed with this method as AMTNO FRQ (Al-
lopenna et al. method, no frequency), AMTREST (activations with frequency
instantiated in resting levels), and AMTWT (activations with frequency in-
stantiated in connection weights).

In order to compute scaled response probabilities with frequency instanti-
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FIG. 9. Experiment 2 simulations: TRACE activations over time for the high- and low-
frequency targets when frequency is turned off (top), when frequency is coded in resting
activations (middle), and when frequency is coded in connection weights (bottom).
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ated at a ‘‘postactivation’’ stage (AMTPOST), we needed a different scaling
factor than the one described in Eq. (7). This is because the scaling factor
in Eq. (7) is based on activations; in the decision-rule method, raw activations
do not incorporate frequency. In order to incorporate frequency in the scaling
without directly applying it on activations, we devised the method presented
in Eq. (8):

∆ 5
max(at 1 f 4)
max(a 1 f 4)

, (8)

where at is the maximum activation (without frequency) at time t; a the
maximum activation observed during all time steps; and f the item’s log-
transformed frequency [see Eq. (6)] raised to the fourth power (to amplify
the frequency effect).

Figure 10 presents the human data for the high- and low-frequency targets,
as well as response probabilities calculated using the four different methods
used for Experiment 1 (RDLNO FRQ, RDLREST, RDLWT, and RDLPOST). In Figure
11, we present the data with the AMT methods computed using activations
without frequency (AMTNO FRQ), with frequency in resting levels (AMTREST),
in connection weights (AMTWT), or in a scaled decision rule (AMTPOST). Fig-
ure 12 superimposes the differences between high-frequency and low-
frequency targets from the data and the four RDL and AMT variants.

Tables 3 and 4 present RMS and r2 values for the high- and low-frequency
targets and for the difference between the two for two windows of interest:
a window including all data points from 0 to 1000 ms and a window included
data points from 200 to 1000 ms, since the frequency difference manifests
itself from about 200 ms onward.

The fit measures confirm the impression given by Fig. 12. As for Experi-
ment 1, the RDLWT method is superior to RDLREST and RDLPOST, and the AMT
methods, by explicitly incorporating task constraints, provide the best fit to
the data. The three AMT methods that incorporate frequency (AMTREST,
AMTWT, and AMTPOST) provide roughly comparable fits as measured by RMS
and r2 values for the high-frequency/low-frequency difference for both win-
dow analyses. AMTPOST provides high r2 values, but its RMS is 30% higher
than those for the other two AMT variants. This is because the scaling factor
in Eq. (8) only partially succeeds in reducing initial activation values. Most
of the improvement in fit compared to RDLPOST is due to sustaining the high-
frequency/low-frequency difference. Thus, a substantial contribution toward
fitting this data comes from choice rules that explicitly incorporate the task
constraints faced by the subject.

These simulations replicate the main result of the simulations of Experi-
ment 1 using the same set of parameters. Response probabilities computed
from TRACE activations account for substantial amounts of variance in our
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FIG. 10. Experiment 2 simulations: Fixation probabilities over time for the target, the
high- and low-frequency competitors, and the distractor, for the data and each of the four
RDL frequency implementations (see text).

time-course data, and the different methods of implementing frequency do
not differ greatly. The importance of this result will be discussed under Gen-
eral Discussion. The simulations of the data from Experiment 2 emphasize
the importance of representing task constraints in simulations. The AMT
methods, which approximate the task constraints of Experiment 2, provide
better fits than the RDL methods.



FREQUENCY AND EYE TRACKING 353

FIG. 11. Experiment 2 simulations: Fixation probabilities over time for the target, the
high- and low-frequency competitors, and the distractor for the data and each of the four AMT
frequency implementations (see text).

GENERAL DISCUSSION

Two experiments used eye movements to investigate the time course of
frequency effects during spoken-word recognition in continuous speech us-
ing a task in which subjects followed spoken instructions to click on and
move pictures in a display. In Experiment 1, a target picture was presented
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FIG. 12. Experiment 2 simulations: Fixation-probability differences between the high-
and the low-frequency competitors over time for the data and each of the four RDL frequency
implementations (top) and the data and each of the four AMT frequency implementations
(bottom).
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along with two pictures associated with cohort competitors and a distractor
picture. The cohort competitors differed in frequency. As the target word
unfolded over time, the competitors were fixated more than the distractor,
replicating ‘‘cohort’’ effects obtained in previous work (e.g., Allopenna et
al., 1998). Crucially, the high-frequency competitor was more likely to be
fixated than the low-frequency competitor. Experiment 2 extended this result
by demonstrating an effect of frequency independent of any possible compe-
tition from the displayed competitors. We presented a referent along with
three phonologically unrelated pictures; the referent was either low- or high-
frequency. The latency with which participants fixated the referent picture
was shorter for high-frequency targets than for low-frequency targets. Simu-
lations using activations generated from the TRACE model of spoken-word
recognition and the linking hypothesis introduced by Allopenna et al. (1998)
provided close fits to the data. These simulations provide strong support for
the claim that frequency influences even the earliest moments of lexical ac-
cess. Frequency implementations within the TRACE model provided ex-
cellent fits to the data regardless of whether frequency was instantiated in
resting-activation levels or connection weights or as a bias applied to activa-
tions at each time slice. Implementations of frequency in connection weights
provided better qualitative and quantitative fits than the other methods.

The results have both theoretical and methodological implications for our
understanding of spoken-word recognition. On the theoretical side, our data
demonstrate that frequency has immediate effects on spoken-word pro-
cessing and these effects persist for a substantial amount of time beyond
the offset of a stimulus. Thus, the results strongly support models in which
frequency is intrinsic to the word-recognition process and affects lexical acti-
vation. We found no evidence that frequency effects are delayed until activa-
tion has passed some threshold. Rather, frequency effects are present at the
earliest measurable points of the recognition process, certainly long before
there is sufficient information for a decision stage to make reliable decisions.
This finding in itself does not refute the argument that characteristics of some
tasks amplify or reduce the influence of lexical frequency on performances
(Balota & Chumbley, 1984, 1985; Sommers et al., 1997) or that such task-
based influences operate via a late response bias. This research shows that
the influence of intrinsic lexical frequency (i.e., the frequency with which
sound patterns occurs in the language) operates very early during spoken-
word recognition. This suggests that models of spoken-word recognition
(such as the NAM) will account for increased variance when they incorporate
metrics that calculate frequency effects using dynamically changing com-
petitor sets. Our simulations show that the time course of frequency ef-
fects closely follows predictions from continuous mapping models, such as
TRACE. Moreover, a variety of frequency implementations and choice rules
can account for these time-course effects. More specifically, tests of three
different frequency implementations (frequency as a bias affecting resting-
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activation level, frequency as a variable that influences connection strength,
and frequency as a postactivation bias) showed that all three give roughly
equivalent accounts of the data, suggesting that the crucial question is not
exactly how frequency operates, but how immediate frequency effects are.
The present work, by translating qualitative models into formal ones, reveals
that the two approaches to frequency most often sharply contrasted in the
literature, the resting-activation level and postactivation bias accounts, make
strikingly similar predictions. This is not as surprising as it might seem; in
Bayesian terms, both of these models can be viewed as implementing fre-
quency as a bias based on priors.

Although the three implementations of frequency used here yielded very
good fit to the data, the connection-strength approach captured the overall
morphology of the frequency effects somewhat better than the other two
models. Overall, the connection-strength approach provided the best fits for
the data from Experiment 1, especially the differences between the high-
and low-frequency competitors. This was because the resting-activation and
postactivation models predicted baseline frequency differences that were not
present in the data. The connection-weight simulations also provided the best
fits for Experiment 2 for the RDL simulations, but not for the AMT simula-
tions, for reasons discussed above. The connection-strength account is also
easiest to reconcile with models in which frequency (and contingent fre-
quency) reflects experience accumulated over time as a result of learning.
Finally, the connection-weight approach is also most compatible with models
in which frequency might have effects at multiple levels of representations,
e.g., joint effects of lexical frequency and phonotactics. However, it is possi-
ble that the other models could be improved with some parameter adjust-
ments.

Given our results, it is important to reconsider the evidence that has been
used to argue against a resting-activation account of frequency. We have
already discussed some of the limitations with the Connine et al. (1993)
arguments against a resting-activation implementation of frequency. The sec-
ond empirical argument comes from studies examining phonological prim-
ing. Goldinger et al. (1989) reported trends for low-frequency primes to gen-
erate stronger inhibitory priming than high-frequency primes. They used the
NAM to explain this result. High-frequency items reach recognition thresh-
old more quickly than low-frequency items. Once an item is recognized, the
system is hypothesized to be reset and word activations to begin to decay
back to resting levels. As a result, activation of the acoustic-phonetic pat-
tern corresponding to a high-frequency prime will begin to return to a rest-
ing level sooner than activation of a low-frequency prime. The result, given
equivalent delays until the presentation of a subsequent target, is greater
competition from residual activation due to a low-frequency prime. Ac-
cording to Goldinger et al., a model in which frequency operates directly
on activation levels (either on resting activations or connection weights)
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would predict more inhibition from high-frequency primes than from low-
frequency primes because high-frequency primes should produce stronger
competing activation. However, Luce, Goldinger, Auer, and Vitevitch (2000)
reported simulations with a connectionist model (‘‘PARSYN’’) in which fre-
quency is instantiated in connection strengths (i.e., the weights of lateral
connections between phonemes are proportional to forward and backward
transitional probabilities), which correctly predicted the trend for stronger
priming by low-frequency items. As Luce et al. note, PARSYN is similar to
a class of models, including TRACE, which presumably would make similar
predictions. Thus, the reported priming difference between low- and high-
frequency primes does not depend on frequency operating as a postactivation
bias.

Our results also have important methodological implications for eye-
movement studies of spoken-word recognition. The eye-tracking methodol-
ogy is extremely sensitive to the time course of lexical processing; it can be
used with continuous speech without interrupting the speech stream and does
not require that participants make an overt decision. Moreover, given an
explicit model, hypothetical activation patterns (or more generally degrees
of evidence) can be mapped onto predicted fixation patterns using an explicit
linking hypothesis. Our results and simulations suggest that the approach
adopted here can be used to develop and evaluate models of the temporal
dynamics of lexical access. It is particularly encouraging that the approach
adopted by Allopenna et al. (1998) provided excellent fits to the data reported
here, using the same parameters and principled mapping of processing cycles
onto recognition time, despite differences in procedure. Moreover, the only
changes to the simulations between Experiments 1 and 2 were changes that
reflected the slightly different task constraints.

An inherent constraint on the eye-tracking methodology is that the spoken
instruction can only make reference to a restricted set of objects that are
visually available. This raises the concern that subjects might adopt a special
verification strategy that bypasses normal lexical processing. This seems
highly unlikely given the results presented here and the procedure we
adopted to reduce preview time. If the lexical candidates that entered the
recognition process were restricted to the visually present alternatives, we
would not expect to see effects of frequency. This is especially true for Ex-
periment 2, where we found clear frequency effects even when the display
did not contain any competitors with names that were similar to the referent.

However, it is possible to argue that the only unequivocal evidence for
effects from the general lexicon would be evidence that fixations to a referent
are influenced by lexical competitors that are neither named nor pictured.
Dahan, Magnuson, Tanenhaus, and Hogan (in press) provided just such a
demonstration in a recent study that examined the time course of lexical
competition when mismatching coarticulatory information was created by
cross-splicing two different speech fragments. Participants were slower to
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fixate the target picture (e.g., the picture of a net) when the onset of the
target word originated from a competitor word (e.g., ne[ck] 1 [ne]t) than
from a nonword (e.g., ne[p] 1 [ne]t). Crucially, this effect was found even
when the competitor word (e.g., neck) was neither named nor pictured during
the experiment. This demonstrates a clear effect of lexical competition that
cannot be accounted for by any form of verification strategy. Moreover, we
were able to model the time course of the mismatch effects using the same
parameters as we used in the current simulations.

In summary, the present experiments and simulations make the following
contributions. First, the time course of the experimental results rules out
models in which frequency effects in spoken-word recognition are primarily
due to decision biases that apply after lexical activation is complete. Second,
the simulations demonstrate that (a) models incorporating frequency provide
better quantitative fits for lexical activations than models without frequency;
(b) models incorporating frequency as a change in resting activation and
models incorporating frequency as a continuously operating response bias
make similar predictions, despite the fact that they are often opposed in
the literature; and (c) models treating frequency as changes in connection
weights capture some aspects of the data that the other models do not.

The temporal sensitivity of the eye-tracking paradigm, when coupled with
the use of an explicit linking hypothesis, makes it a powerful tool for investi-
gating the time course of spoken-word recognition and for evaluating predic-
tions made by alternative models. The current results suggest that the para-
digm should be applicable to a wide range of questions about the time course
of lexical access.
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APPENDIX B
TRACE Parameters

Maximum activation 1.0
Minimum activation 20.3
Feature-level decay 0.01
Phoneme-level decay 0.03
Word-level decay 0.05
Feature-to-phoneme excitation .02
Phoneme-to-word excitation .05
Word-to-phoneme excitation .03
Phoneme-to-feature excitation .00
Feature-level inhibition 0.04
Phoneme-level inhibition 0.04
Word-level inhibition 0.03
Feature default resting activation 20.10
Phoneme default resting activation 20.10
* Word default resting activation 20.30 [20.01]
* Word printing threshold 21 [.05]
Feature continua weights: all set to 1.0
* F scale (the frequency scaling constant s):

0 (No-Frequency simulations) [0.0]
0.06 (Resting-activation simulations)
0.13 (Connection-weight simulations)

Note. An asterisk indicates parameters set to something other than
the original TRACE defaults. The number in square brackets indicates
the original value.
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APPENDIX D

Control Experiments for Experiment 2

Ten participants (who did not participate in Experiment 2) took part in
the control experiments. First, participants were presented with the pictures
of the 21 pairs and their distractors on a computer screen and had to decide,
for each picture successively, whether the object represented exists in nature
or is artificial (i.e., ‘‘man-made’’). Participants were instructed to decide as
quickly and accurately as possible and press one of two keys of the computer
keyboard to indicate their answer. A few practice trials using distractor pic-
tures initiated the session. Accuracy and reaction times were collected. This
task required the participants to recognize the object in order to make their
decision without requiring access to its name. If pictures for high-frequency
and low-frequency items could be recognized equally well, we expected to
see comparable decision times for both types. However, some pictures were
difficult to classify [e.g. clown and heart (represented by the card-suit sym-
bol)] and yielded incorrect responses. After excluding all incorrect responses
(3.6% of the data; 11 on high-frequency items and 12 on low-frequency
items), we analyzed the reaction times. High-frequency pictures were re-
sponded to more slowly than low-frequency pictures [749 ms vs 674 ms,
t(9) 5 2.79, p , .05]. This effect was also found when the corrected re-
sponses from heart and clown were excluded [t(9) 5 3.14, p , .05]. Thus,
the pictures associated with the low-frequency items appeared to be recog-
nized more easily than the pictures associated with the high-frequency items.
If this difference were to play a role in the eye-tracking study, it would go
against the predicted advantage in the latency for fixating high-frequency
target pictures compared to low-frequency target pictures.

The second control experiment consisted in subsequently presenting the
same participants with the same pictures and asking them to name each pic-
ture by typing the name on the computer keyboard. Name agreement for the
high-frequency and low-frequency pictures did not differ significantly
(84.3% vs 82.9%, t , 1). Name agreement for heart and clown was very
high (90 and 100%, respectively), indicating that the incorrect responses ob-
served in the picture-recognition experiment resulted from the nature of the
classification, not from the pictures themselves.

These control experiments indicated that the pictures associated with high-
frequency items were not easier to recognize or more accurately named than
the pictures associated with the low-frequency items. Thus, faster fixations
to the pictures with high-frequency names could not be attributed to charac-
teristics of the pictures.
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