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1. INTRODUCTION

A small set of digits, letters, words, or other items
(the positive set, P-set) is presented. After a probe
delay and a warning signal, a probe item appears.
The subject responds (usually manually) under
time pressure as to whether or not the probe is a
member of the P-set (a P-probe). The negative set,
N-set, which if possible is larger than the P-set, con-
tains the items presented as probes (N-probes) that
are not members of the P-set. The stimulus ensemble
—the union of P-set and N-set—contains all the
items in the experiment. When on each trial the
members of a new P-set are presented slowly and
sequentially in one location, and the probe delay is
long, I shall call this procedure the Sv task, where
“v” represents “varied”: The P-set changes from
trial to trial. In the fixed-set procedure, the Sf task,
a P-set is presented, followed by a series of perhaps
50 to 100 trials on which only probes are presented,
to be judged in relation to that fixed P-set. In both
tasks, we can determine themean reaction-time func-
tions, RT pos and RT neg, for correct responses on P-
trials (trials with P-probes, requiring positive
responses) and N-trials (trials with N-probes, requir-
ing negative responses), respectively. These func-
tions, which describe the increase in mean reaction
time (RT ) with the number of items npos contained
in the P-set, are found to be approximately linear,
consistent with the decision being based on a
process of serial comparison of an internal represen-
tation of the probe to internal representations of the
members of the P-set. The slopes βpos and βneg of
these functions for positive and negative responses,
from 30 to 40 ms/item for digits, indicate that the
rate of such an inferred scanning process would
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have to be unexpectedly high—much higher, for
example, than the rate of speeded articulation
(Cowan et al., 1998; Sternberg, Knoll, Monsell, &
Wright, 1988) or the rate of speeded implicit
speech (Landauer, 1962). Also unexpected is the
finding that βpos and βneg are approximately equal,
suggesting that instead of terminating when a
match is discovered, the search is exhaustive, continu-
ing through the entire set, even when the probe
is a member. The interpretation proposed for
these findings and others (Sternberg, 1963, 1966)
was that to respond to the probe, subjects engage in
a high-speed serial exhaustive search (SES) process.

Why did these findings and their interpretation,
published in Science in 1966, arouse the remarkable
level of interest that it did—the mean RTs replotted
in the Courrier Scientifique section of Le Monde
(Verguese, 1966), and the hundreds of related
studies continuing to the current century? One can
speculate about the reasons: The data are orderly
and elegant, with a linear relation between straight-
forwardmeasures; simple inferences from these data
lead to unexpected conclusions (such as the contents
of active memory not being immediately accessible);
the findings are among the earliest to demonstrate
that small effects on RT can be interesting, that
the structure of a mental process can be revealed by
details of RT data, and that memory can be investi-
gated when it is functioning without error; the fact
that the inferred process seems to be unavailable to
consciousness; the implausibility of its high speed
(given what was then believed about the brain); its
exhaustiveness; and, perhaps most important (and
the reason for its clinical applications as a measure
of brain function), the revelation that the speed of
a mental process might be measured separately
from the complexities of perception and response.1

Scepticism about SES seemed not to be dimin-
ished by other findings that accompanied those
mentioned above:

1. Qualitatively and quantitatively similar results
from the Sv task (short-term memory), and
the Sf task, for which sets can be recalled on

the following day (long-term memory)
(Sternberg, 1963, 1966).

2. Growth of RT with npos too great, relative to
variability, to be explained by independent par-
allel comparisons (Sternberg, 1963, 1966).

3. Absence of an effect of the size nneg of theN-set
in the Sf task (Sternberg, 1963, 1966, and
1975, Figure 3).

4. Effects of npos obtained in the Sf taskwhen npos is
varied by changing only the mapping of probes
onto the two responses, while altering neither
the sequence of probes nor the proportion of
P-trials (Sternberg, 1963, 1966, 1967c).

5. Minimal modulation of the effects of npos by
relative response frequency (Sternberg, 1963;
1969b, Figure 4E).

1.1. Attacks on high-speed memory
scanning

Since Luce (1986, p. 429) wrote “The attack on
Sternberg’s interpretation of his data has been
intensive and sustained”, the attack has continued:

Finding out what the measures mean is, however, a far from easy
task, and in the meantime I would settle for a moratorium on
interpreting their results as direct measures of mental processes
such as “memory scanning”. (Baddeley, 1990, p. 279)

[Sternberg’s] claim was a startling one—that short-termmemory
was characterized by a limit in retrieval: Items were not immedi-
ately available, but rather were recognized by sequentially com-
paring a test item to all items held in short-term memory.…
Attractive though it may be, Sternberg’s model is incorrect…
[instead] retrieval from immediate memory reflects a set of par-
allel comparisons with an active subset of memory items.
(Dosher & Sperling, 1998, pp. 239, 242)

… Sternberg… suggested that performance was based on exhaus-
tive serial scanning of the list items in search of the probe item. This
conclusion was based chiefly on the finding that reaction times
(RTs) increased linearly with list length.…More sophisticated
analyses by McElree and Dosher (1989) showed that performance
is better explained by direct access than by serial scanning.
(Henson, Hartley, Burgess, Hitch, & Flude, 2003, p. 1308)

STM retrieval of item information is a rapid, parallel, content-
addressable process.… Serial-scanning models fell out of favor
because of empirical and modeling work showing that parallel

1This feature of the paradigm depends on the influence of npos being selective: It affects the search process, but not perceptual or
response processes. See Sternberg (1969b) for evidence of such selectivity; see also Schweickert, Fisher, and Sung (2012) and Sternberg
(1998).
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processes provide a better account of the reaction time distributions
in STM tasks (e.g., Hockley, 1984). (Jonides et al., 2008, p. 204)

1.2. Alternatives to high-speed memory
scanning

As suggested above, and reviewed by McNicol and
Stewart (1980, p. 256), the major alternatives to
SES fall into two classes: content-addressable
(direct-access) accounts, such as that of Baddeley
and Ecob (1973, Model I), in which the response
to a probe is determined by evaluating the strength
(or level of activation) of its representation in
memory relative to a criterion that varies with
npos; and parallel comparison accounts, such as
that of Ratcliff (1978), in which the degrees to
which the probe is similar to representations of
P-set members are assessed in parallel. In his
thorough analysis of the alternatives that had been
proposed until then, Monsell (1978) also includes
“response-association” models, such as that of
Theios, Smith, Haviland, Traupmann, and Moy
(1973). The alternatives also include the hybrid
model of Atkinson and Juola (1974), discussed in
Section 2.1. (See also Sections 5, 6, and 7.4 of
Sternberg, 1975, for discussion of alternatives.)

1.3. Brain function and the plausibility of
high-speed scanning

One contribution to scepticism about the claim of a
rapid serial search process may have been ideas
about the brain that were prevalent in the 1960s
and 1970s. In 1973, James Anderson wrote:

It is difficult to think of cortical mechanisms capable of searches
as fast as 35 milliseconds/item if we take the view that items are
“taken out” of memory and “compared” with other items. This
would seem to make a great many operations for a nervous
system composed of what are really rather slow components.
Time constants of postsynaptic events in cortex are, for the
fastest excitatory postsynaptic potentials, on the order of
several milliseconds, and, for inhibitory postsynaptic potentials,
may be on the order of tens of milliseconds, or even more…
structures with high temporal resolution often seem to be quite

specialized for these purposes, probably because such operations
are difficult to achieve with neural elements. (p. 420)

Other possible sources of implausibility include the
hypothesized process being unavailable to intro-
spection, a preference for the idea that the same
mechanism underlies retrieval from active memory
(AM) and long-termmemory (LTM), and popular-
ity of the idea that the brain functions as a parallel-
processing machine (e.g., Anderson, Silverstein,
Ritz, & Jones, 1977; Feldman & Ballard, 1982).

By the 1990s, however, considerable interest in
brain oscillations in the range (20–100 Hz) had
developed, and Crick and Koch (1990), Horn and
Usher (1992), and Lisman and Idiart (1995)
suggested that such oscillations might reflect the
operation of a limited-capacity dynamic AM in
which each cycle in a series of cycles corresponds
to activation of the neural representation of one of
the items in a memorized sequence. As discussed
in Section 3, Jensen and Lisman (1998) developed
this idea further and suggested that models based
on it could account for “memory scanning” data.
Buzsaki (2006, p. 115) wrote: “Each oscillatory
cycle is a temporal processing window, signalling
the beginning and termination of the encoded or
transferred messages.… In other words, the brain
does not operate continuously but discontinuously,
using temporal packages or quanta.”2

Also adding to the plausibility of a sequential
process are recent discoveries of other neurophysiolo-
gical evidence for sequential operations (e.g.,
Anderson, Zhang, Borst, & Walsh, in press; King
& Dehaene, 2014; Schall, 2003; Schall, Purcell,
Heitz, Logan, & Palmeri, 2011; Sigman &
Dehaene, 2008).

Despite their antiquity, issues related to whether
high-speed memory scanning occurs, and how to
measure it if it does, discussed in the present
paper, are important because of its increasing use
in understanding human brain function (see, e.g.,
Roux & Uhlhaas, 2014) and its clinical appli-
cations. (For examples of applications in research
on multiple sclerosis and Parkinson’s disease, see
Archibald & Fisk, 2000; Ramsayr et al., 1990;

2In an alternative approach, Amit, Sagi, and Usher (1990) developed a neural network model with three attractor subnetworks that
can generate the speed, linearity, and exhaustiveness of SES.
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Rao, St. Aubin-Faubert, & Leo, 1989; and Drew,
Starkey, & Isler, 2009.)

1.4. This paper

Section 2: There has been controversy about the
data as well as their interpretation. One important
reason is that the results (and the processes they
reflect) vary, depending on details of the exper-
imental procedure, details whose importance has
not been sufficiently appreciated. I describe six
different tasks of memory interrogation and show
systematic differences in the findings produced by
the most popular ones.

Section 3: I describe a neurophysiological model
for memory scanning, along with tests of the model
and possible modifications suggested by measure-
ments of the rat brain.

Section 4: The finding of a linear relationship
between immediate memory span and the memory
scanning rate, across classes of items, has been repli-
cated several times. The neurophysiological model
described in Section 3 can explain it, and can also
explain how there might be no correlation of span
and rate across subjects.

Sections 5 and 6: It has been claimed that some
predictions from the SES model are violated. Some
of the claimed predictions—about the effects of
npos on the RT variance (Section 5) and on the
shortest RT (Section 6) depend on assumptions
outside the model, and, furthermore, they are not
violated in either the Sv or Sf tasks.

Section 7: According to one alternative to the
SES model, npos should have a minimal effect on
the accessibility of the most accessible item in the
P-set. A rigorous test has not yet been devised.

Section 8: Results of an experiment in which
retrieval from AM is compared to retrieval from
inactive memory may tell us about the process of
activation and bears on other interesting issues.

Section 9: Effects on RT of the recency of an
N-probe is an important indicator of the use of
memory strength in responding. Any such effects
are absent in two experiments using the Sf task.

Section 10: In plausible interpretations of evi-
dence-accumulation models, npos influences the
rate of accumulation while the probability of a

response influences the amount of evidence required
(the decision criterion). One implication is that npos
and Pr{pos} should interact negatively. Findings
from a factorial experiment violate the prediction.

Section 11: Remarkably, there is little evidence
that permits us to decide that the SES model
describes a process of serial comparison, rather
than merely one of serial activation.

Section 12: Despite the large number of relevant
studies since 1975, many interesting questions
remain, some of which are mentioned, that can
be addressed by new experiments.

Appendix A defines the abbreviations for 23 of
the experiments mentioned in this paper, as well
as providing numbers of the sections in which
each experiment is mentioned.

Appendix B provides evidence about the impor-
tance of motivating subjects to perform well, by
providing feedback and performance-dependent
rewards, and includes other suggestions about
how to investigate high-speed scanning.

Appendix C describes my analysis of the
Atallah–Scanziani recordings of gamma oscil-
lations in the rat hippocampus.

AppendixDdescribes procedure variants inwhich
there are pronounced sequential and frequency
effects, and the evidence for such effects in the Sf task.

Appendix E discusses the effect of requiring
recall after the speeded response in the Sv task.

Appendix F describes sources of the information
in Tables 1, 2, and 4.

Some of the argument depends on assuming that
the sameprocess is elicited inSv andSf tasks. Support
for this assumption is provided in Sections 2.2, 2.4,
5.2, and 6.2. Other sections show that data from
the Sf task are incompatible with alternatives to
SES according to which effects of npos are due to its
influence on the memory strengths of probes
(Sections 6, 8, and 9) or due to its influence on the
rate of evidence accumulation (Section 10).

2. SIX TASKS OF MEMORY
INTERROGATION

When some aspect of an experimental procedure is
changed, is this another way to study the same
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process, or does it elicit a different process? Or, if the
subject has a choice of strategy (conscious or not), do
the details of procedure influence the subject’s choice?
And how might we know which of these is the case?

2.1. Sv and Sf tasks

The procedure difference between the two exper-
iments reported in Sternberg (1966), one using
varied sets (the Sv task) and the other fixed sets
(Sf task), had little effect on the pattern of mean
RTs: RTs on P-trials and N-trials in both exper-
iments increased approximately linearly, with
approximately equal slopes of about 38 ms per
item, and with zero intercepts of less than
400 ms. Features of the Sv task include: a small
stimulus ensemble; sequential presentation of the
P-set at a slow rate (about 1 s/item); a different
P-set, possibly different in size, on each trial; a
long delay between P-set and probe (about 2 s); a
warning signal before the probe; and paid subjects,
with additional monetary incentives based on speed
and accuracy, with a high cost of errors.3

In the Sf task, presentation of the P-set is fol-
lowed by a series of perhaps 50 to 100 trials
(divided into blocks of 20 to 40) on each of which
a probe is presented, calling for a positive or negative
response. Because it is important to avoid a consist-
entmapping of stimuli to responses and the learning
of associations that it produces (Kristofferson,
1972a; Schneider & Shiffrin, 1977), some or all of
the P-set members in one condition become N-set
members in the next, and nesting of different P-
sets for the same subject is avoided. Also, to
promote the independence of responses from one
trial to the next, the response–stimulus (R–S) inter-
val is long (e.g., 4 s or more), long enough to provide
feedback on at least the correctness of the response, a
delay, and a warning signal. Kristofferson (1972b)
has shown that under such conditions the main

features of the data (linearly increasing functions
with βpos ≈ βneg≈ 36 ms/item when the items are
digits) remain invariant across more than 4000
trials of practice.4

Perhaps it was the similarity of the phenomena
generated by these two procedures, despite their
differences, that encouraged the belief that other pro-
cedural variants would also elicit the same process.
On the other hand, thework ofAtkinson and his col-
laborators (Atkinson,Herrmann,&Wescourt, 1974;
Atkinson & Juola, 1974; Banks & Atkinson, 1974;
see Sternberg, 1975, Section 7.4) have made it clear
that alternative strategies are available—in particular,
discrimination of the strength or level of activation of
the probe’s representation inmemory (its familiarity),
which can be accessed directly, rather than interrog-
ation of AM itself. I shall call this “strength discrimi-
nation”. And Gaffan (1977) has argued (see also
Browning, Baxter, & Gaffan, 2013) that familiarity
discrimination and P-set interrogation depend on
different brain mechanisms, based partly on the
finding that the lesions associated with amnesia
impair only the former.

According to the hybrid model developed by
Atkinson and his collaborators, the first process
after a probe is encoded is a stage whose duration is
independent of npos , in which the strength of its
memory representation is evaluated and a decision
made based on this evaluation. Only if the strength
is neither above a high criterion (causing generation
of a positive response), nor below a low criterion
(causing generation of a negative response)—criteria
that are independent of npos—is that stage followed
by serial comparisons to members of the P-set.
The RT is thus a mixture of RTstrength

and RTstrength +RTscan, with only RTscan increasing
with npos .

5 Whereas most of the evidence for the
hybrid model has involved recognition of items
from long lists, two experiments (Darley & Arabie,
described by Atkinson & Juola, 1974, pp. 269–276;

3Appendix B contains evidence of the extent to which the performance of many subjects depends on providing feedback and tan-
gible incentives.

4In Appendix D, I describe variants of the Sf task in which the R–S interval is brief, which produce substantial effects of probe
recency and frequency, and I consider the available evidence for such effects when the R–S interval is long.

5As formulated, if the serial comparison process occurs, it follows the decision based on memory strength of the probe. An alterna-
tive is that the two processes occur in parallel, with RTstrength ,RTscan, so that when scanning is called for, RT=RTscan. One way in
which these alternatives might be discriminated is mentioned in Section 12.4.
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Hockley&Corballis, 1982, Exp. 1), have shown that
it can also account for the behaviour ofRT with short
lists.6

Differences of memory strength among probes
can be regarded as a by-product of the experimental
procedure: Presentation of the P-set not only
creates a representation of the set, but also tempor-
arily increases the strengths of the memory rep-
resentations of its members; rehearsal of the set is
believed to do the same,7 and presentation of a
probe temporarily increases the strength of its
memory representation. These representations do
not carry information about set membership per
se, but under some conditions their strengths can
be used to make accurate inferences about it.
Those who have argued for the importance of
strength discrimination have not attempted to
explain the similarity of the RT functions produced
by Sv and Sf procedures, despite what would appear
to be large differences in their consequences for
memory strength. Monsell (1978, pp. 496–497)
seems to argue that Sf elicits a different process
from Sv, because results that differ from those of
Sf are produced by other procedures involving a
fixed set. (Examples are preventing maintenance
of a short-term representation of a well-learned
P-set, or providing practice with a consistent
mapping, which may permit the use of S-R associ-
ations.) But another possibility is that the similarity
of results from Sv and Sf tasks means that strength
discrimination or performance of S-R associations
are seldom used in those tasks.

Atkinson et al. (1974) provide a useful discussion
of the determinants of whether scanning occurs.
They point out that the use of small stimulus ensem-
bles implies little strength difference between N-
probes and P-probes (because each item is seen
more than once, sometimes as a member of the P-
set, sometimes of the N-set), hence increasing the
chance that scanning will be required. In contrast,
with large ensembles, memory-strength differences

between P-probes (just seen, or just rehearsed) and
N-probes (last seen many trials earlier, and not
rehearsed) may be large, permitting scanning to be
avoided. They also suggest that strength discrimi-
nation is more likely to be used under conditions
that emphasize speed over accuracy (as in McElree
& Dosher’s cued-response task, discussed below).
In a similar vein, Schneider and Shiffrin (1977,
pp. 31–32) have emphasized the idea that subjects
are flexible, that they may have at their disposal
more than one strategy, that tasks may elicit mix-
tures of strategies, and that previous experience
and the current mixture of conditions may influence
which strategy they adopt.

Nonetheless, some investigators seem to have
assumed that radically different tasks all elicit the
same process, and when one of these tasks gives
rise to data that are inconsistent with SES, they
have asserted that the latter is wrong in general.
Thus, based on data from the cued-response task
(see below), Dosher and Sperling (1998, p. 242)
claim that “Attractive though it may be,
Sternberg’s model is incorrect”, rather than
“Attractive though it may be, Sternberg’s model is
incorrect for the cued-response task.”

I shall call the two most influential alternative
paradigms the Monsell task (Monsell, 1978, Exps.
Monsl78.1, Monsl78.2), also exemplified by
Corballis, Kirby, and Miller (1972), Johns and
Mewhort (2011), and Exps. Rcliff78, McEl89.p,
McEl89.2, and Nosof11; and the Ashby task,
(Ashby, Tein, &Balakrishnan, 1993), also exempli-
fied by Chase and Calfee (1969), Ellis and Chase
(1971), Franklin and Okada (1983), Klatzky and
Smith (1972), Klatzky, Juola, and Atkinson
(1971), Oberauer (2001), Nickerson (1966),
Schneider and Shiffrin (1977, Exp. 2, frame size
1), Smith (1967), Exps. Ashby93, Schnei77, and
Frank83, and a number of fMRI studies.8 As these
tasks use a new P-set presented on each trial, they
should be compared with the Sv task.

6In the hybrid model, errors can arise only during the strength-discrimination stage. If this assumption is relaxed, support for the
model is also provided by Banks and Atkinson (1974). The conclusion from the Hockley and Corballis experiment should be regarded
as tentative, because they used a brief (500 ms) R–S interval (see Appendix D).

7But in relation to serial recall, the roles of decay, and of rehearsal in counteracting its effects, are controversial (Lewandowsky &
Oberauer, 2015).

8Examples are Bunge, Ochsner, Desmond, Glover, and Gabrieli (2001) and Schneider-Garces et al. (2009).

2026 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2016, 69 (10)

STERNBERG



2.2. Monsell task9

In experiments using this task the presentation rate
is about 0.5 s/item, the probe delay is 0.3–0.5 s, and
the stimulus ensemble is sometimes large. Thus, in
McElree and Dosher’s (1989) RT experiments,
Exps. McEl89.p and McEl89.2, on which their
cued-response task is based, imitating a feature of
Monsell’s (1978) Exp. 2 (Exp. Monsl78.2), there
were two stimulus ensembles, each containing 50
words, one used on odd trials, the other on even
trials. (Monsell’s ensembles each contained 36
words.) Assume that memory strength of a probe
declines as the number of trials, Δtrials, between
its last appearance (or rehearsal) and the current
trial increases. For P-probes Δtrials= 0, but for N-
probes it depends on the size of the ensemble from
which the probe is drawn and whether the ensem-
bles alternate from trial to trial. For the RT version
of the Monsell task, as implemented by McElree
andDosher (1989), simulations of the trial sequence
for their “pilot study” (Exp. McEl89.p) produced a
range of Δtrials for N-probes of from 2 to 184 and
a mean of 22.4. (Corresponding simulations for
the Sv task with an ensemble of 10 items gave a
range of Δtrials of 1 to 18 trials and a mean of 2.5,
a difference of almost an order of magnitude.) The
great difference in recency between probes on P-
trials and N-trials in this version of the Monsell
task, compared to the Sv task, is likely to increase
the utility of strength discrimination.

That a different process underlies performance
in Monsell and Sv tasks is suggested by the data
in Table 1, which compares five experiments
using Sv or Sf tasks with seven experiments using
the Monsell task or a variant. Among the Sv and
Sf tasks, Hockley’s (1984, Exp. Hock84) subjects
were slower and more error prone, perhaps
because they were given neither incentives nor feed-
back about speed and/or they were required to
switch between memory search and visual search
tasks every 40 trials. Their data were pooled over

all trials in the memory search task, neglecting
the possibility that the data from trials immediately
after a task switch were unusual. Also, data were
pooled over all 11 sessions, without regard for poss-
ible practice effects. Perhaps these are also reasons
for the unusually high error rates (Table 1) and var-
iances (Section 5.2).

The Monsell task produces flatter RT functions
and greater zero intercepts than the Sv or Sf tasks
(with the exception of Exp. Hock84, which has
unusual features; see above), which produce similar
values. Error rates are higher in the Monsell task,
despite, in some cases, larger amounts of practice.
These properties are those interpreted by Atkinson
and Juola (1974) as resulting from a large proportion
of trials onwhich themechanism is strengthdiscrimi-
nation of the probe, rather than search of the P-set.
Also, as shown in the t3 column, RT s tend to be
greater, again despite additional practice. Monsell
(1978, p. 496) and Diener (1988, p. 375) have men-
tioned another possibility for why a scanning process
might not be used in theMonsell task—that too little
time is available in that task to form a representation
of the P-set that can be scanned. If such a represen-
tation is never formed for a P-set consisting of
complex pictures, then this conjecture is supported
by Gaffan’s (1977) important experiments using the
Sv task to compare P-sets of such pictures with P-
sets of disyllabicwords. Evenwith a very slowpresen-
tation rate (4.5 s/item) and a very long (6 s) probe
delay, the decisions about the pictures, but not
about the words, appear to have been based on
strength discrimination: For example, only the
serial-position functions of the former showed a facil-
itating effect of recency on P-trials.

Two other features of the data distinguish the
Monsell task and should be regarded as diagnostic
of strength discrimination: One, reported by
Gaffan (1977, Exp. 2) and Monsell (1978), is the
“N-probe recency effect”: N-trials with probes
that have been seen recently elicit longer RTs.10

9Stephen Monsell was the first investigator to use this task with an adequate number of subjects under conditions that pro-
duced an acceptably low error rate. His experiments, but not the others described below, included instructions to subjects not to
rehearse the P-set.

10Using the Sv task, Gaffan (1977, Exp. 2) found a strong N-probe recency effect averaging about 150 ms with P-sets of complex
pictures, but no such effect with P-sets of words. In Exp. McEl89.2, using the Monsell task with npos= 3, 4, 5, and 6 words, the effect
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If this effect occurred in the Sf task, then we would
expect that as nneg is reduced, with npos fixed, the
resulting increase in N-probe recency would cause
RT neg to increase. But, as discussed in Section 9,
this has not been found. The other feature is the
existence of pronounced serial-position effects on
P-trials, mainly characterized by recency effects
(an RT advantage when more recently presented
items are probed).

Donkin and Nosofsky (2012) provide an
additional source of evidence for the difference
between the processes that underlie Monsell and Sv
tasks. They found that data from the Monsell task
(Exp. Nosof11) but not the Sv task (Exp. Donk12)

could reject the SES model in favour of parallel
self-terminating and global familiarity models.11

It is possible that the critical distinction between
Sv and Monsell tasks is the probe delay and not the
presentation rate. In experiments with varied probe
delay, with slow presentation rate (Clifton &
Birenbaum, 1970; probe delay from 0.8 s to 4.8 s,
but with strategy differences across subjects) and fast
presentation rate (Forrin & Cunningham, 1973;
probe delay from 0.5 s to 3.5 s, but with very high
error rates), the magnitude of the effect of serial pos-
ition on P-trial RTs has been found to decrease as the
probe delay is lengthened.12 Also, whereas the pres-
entation rate in Exp. Jacbs06 (see Table 1) was

Table 1. Comparison of Sv and Sf tasks with Monsell task.

Task Experiment Items MnTrls Nsub npos Z-Icpt Slope t3

Mean Percent Error (npos)

(1) (2) (3) (4) (5) (6)

Sf Stern66.2 d 300 6 1,2,4 369 38.3 484 0.4 1.4 1.8
Sf Stern67int d 180 12 1,2,4 351 36.5 461 0.6 1.7 1.4
Sf Stern69b.4eq d 230 12 1,2,4 378 35.9 486 1.3 1.0 1.3
Sv Stern66.1 d 96 8 1–6 397 37.9 511 0.0 0.5 2.1 2.6 1.0 1.6
Sv Hock84 c 1760 6 3–6 512 45.2 648 2.3 2.7 4.3 7.4

M Nosof11 c 2375 4 1–5 381 29.2 469 1.8 2.3 2.7 4.2 5.9
M Monsl78.1 c 834 8 1–4 430 28.7 516 1.7 3.1 3.6 6.2
M Monsl78.2 w 924 8 2–5 436 23.7 507 1.4 2.7 4.6 7.4
M Rcliff78 d 2400 2 3–5 559 20.0 619 1.7 1.8 2.2
M McEl89.p w ? 10 3–5 613 21.3 677 6.0 7.0 7.5
M McEl89.2 w 298 18 3–6 633 18.9 690 6.5 10.3 15.5 17.5
M? Jacbs06 c 576 18 2,4,6 571 27.3 653 2.7 5.2 10.3

Note: Tasks: Sf= Sternberg, fixed set; Sv= Sternberg, varied set; M=Monsell; M?=Monsell variant.
Items: d= digits, c= consonants, w= two-syllable words. MnTrls=Average number of test trials per subject (not available for
Exp. McEl89.p). Nsub= number of subjects. npos= size of P-set. Z-icpt= zero intercept of mean RT function. Slope= slope of
mean RT function (mean of βpos and βneg, ms/item). t3=Z-icpt+ (3× slope): Estimated RT for npos= 3, a measure of RT
that facilitates comparison of experiments (ms). See Appendix G for sources.

increased slightly with npos , and averaged about 50 ms: Equations of linear functions fitted to RT for P-probes, distant N-probes, and
recent N-probes, 587+ 19.8 npos , 670+ 13.6 npos , and 687+ 22.3 npos , respectively. Mean error rates for these probe types were
13%, 5%, and 19%, respectively. Results of Monsell’s (1978) corresponding experiments, in which the effect also increased with
npos and averaged about 25 ms, were qualitatively similar, but slopes of the fitted linear functions were substantially greater, zero-inter-
cepts substantially smaller, and error rates much lower.

11In considering the results of Exp. Donk12 it is worth noting that although subjects worked for ten sessions, they received feed-
back about the accuracy but not the speed of their responses.

12One exception is the study by Burrows and Okada (1971) who compared the Sv task and the Monsell task within subjects, with
npos-values of 1, 2, 3, and 4, and found surprisingly small and non-significant differences between the magnitudes of serial-position
effects between tasks. However, their subjects, who received no feedback, were highly error-prone (5.7% in the Sv task, compared
to 1.3% for the same npos values in Exp. Stern66.1), with a slower RT = 607 ms (compared to 492 ms in Exp. Stern66.1), and
with a mean slope of 23.7 ms/digit, more characteristic of the Monsell task, so they may not have been performing optimally.
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slow, as in the Sv task, the probe delay was only about
250 ms.13 And the data resemble those from the
Monsell taskmore closely than those from theSv task.

2.3. Cued-response Monsell task

As mentioned above, in McElree and Dosher’s
version of the Monsell task (1989, Exps.
McEl89.p andMcEl89.2), themean recency differ-
ence betweenP-probes andN-probeswas very large,
increasing the utility of strength discrimination rela-
tive to the Sv task. In their variant of this task (1989,
Exps. 1 and 3), subjects are forced to respond, on
presentation of a tone-burst cue, at various times
before processing is complete.14

2.4. Ashby task15

In this task, theP-set is presented simultaneously, as a
row of items. This invites (but does not require) the
subject to represent the set as a visual image, which
I believe is unlikely when items are presented sequen-
tially in one location.16 What might we expect on
those trials on which the search is of an image? If
the search were serial and self-terminating, we
would expect (βneg / βpos) ≈2; if the search were
from left to right, we would expect monotonically
increasing serial-position curves.17 If the search

were a mixture of some trials on which search was
exhaustive, and others on which it was self-terminat-
ing, we would expect 1, (βneg / βpos), 2.

Reports of search of the display or image of a row
of characters are in conflict. Nickerson (1966),
Sternberg (1967a), and Hockley (1984) concluded
that such search is serial and self-terminating.
Atkinson, Holmgren, and Juola (1969) disputed
this, as did Townsend and Roos (1973). Van Zandt
and Townsend (1993), in a thorough review, argue
that search in neither visual displays nor memory is
exhaustive, but, referring to whether βneg is greater
than βpos , they report that “Memory search most
often yields parallel set-size functions, whereas
visual search is more likely to yield significant slope
differences” (p. 567). Data from Group 3 of Briggs
and Johnsen (1972),whoused afixed-set procedure18

to study display search with 12 subjects, support self-
termination, with βpos= 22.7+ 2.5 ms/letter,
βneg= 39.9+ 3.1 ms/letter, and a slope ratio of
1.82+ 0.24.19 On the other hand, the slopes of the
display-search (frame size 1) data in Schneider and
Shiffrin’s (1977) varied set procedure, with four sub-
jects experienced with other tasks, are small and
approximately equal, with βpos= 16.7 ms/letter and
βneg= 15.1 ms/letter.

Results from Sv and Sf tasks are compared to
those from the Ashby task in Table 2.20 They

13Also, for npos, 6, subjects did not know npos until the probe appeared.
14McElree and Dosher (1989) used their cued-response task, rather than the Meyer, Irwin, Osman, and Kounios (1988) “speed–

accuracy decomposition” task, in which the process is permitted to go to completion on a random subset of trials (rather than the
response being cued on all trials), which permits testing whether the cued-response procedure is eliciting the same process as in a stan-
dard RT experiment.

15The most thorough analysis of data from this task is provided by Ashby et al. (1993).
16The figure that Townsend and Ashby use to illustrate the “memory scanning task” (1983, Figure 6.1) actually shows the Ashby

task. However, Ashby et al. (1993, p. 543) comment that “the use of simultaneous presentations makes the memory scanning task more
similar to visual search (Atkinson et al., 1969) and in visual search it is thought that subjects search through a visual short-term store
(Townsend & Roos, 1973)”. Because the Ashby task does not require the subject to use the visual array representation, what the subject
actually chooses to do may depend on previous experience and level of practice, and we may find substantial individual differences.
Whether or not a subject is using a visual representation may be revealed by the RT pattern (see Table 2), but mixed strategies
present problems for such inference.

17If responses are made by left and right hands, such a pattern might be complicated by the Simon effect (Kornblum, Stevens,
Whipple, & Requin, 1999; Lu & Proctor, 1995), which, e.g., would shorten RTs when the target is further to the right if the positive
response is made by the right hand.

18The memory sets were fixed for 48 trials, but they called this a “varied-set” procedure.
19Standard errors are based on differences across four sessions
20Ashby et al. (1993, Exp. Ashby93) displayed the memory set for npos s. Schneider and Shiffrin (1977, Exp. Schnei77) displayed it

for as long as the subject wished on each trial. Franklin and Okada (1983, Exp. Frank83) displayed it for 150 ms, and used a probe delay
of only 500 ms.
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show that whereas βneg ≈ βpos in the former,
βneg. βpos in the latter, with a ratio that is greater
than 1:1, but less than 2:1, consistent with a
mixture of exhaustive and self-terminating search.21

However, given plausible added assumptions,
such a mixture would lead us to expect the RT var-
iance to grow more rapidly with npos for P-trials
than for N-trials—the opposite of what was
observed (Ashby et al., 1993, Figure 6). Like the
pattern shown in Table 1 of Sternberg (1975),
the unequal slopes are associated with a higher
value of βneg, suggesting a slower search rate (if
the search is sequential).

The idea that AM for a spatial array and for a
sequence may be represented differently has a
long history (e.g., Fougnie, Zughni, Godwin, &
Marois, 2015; Scarborough, 1972) and is sup-
ported by brain measurements: According to
Roux and Uhlhaas (2014, p. 21–22), “ … theta
activity occurs preferentially in tasks that involve
sequential coding of multiple [working-memory]
items, such as during the Sternberg paradigm
… whereas alpha oscillations tend to occur
during tasks that require maintenance of simul-
taneously presented visual or spatial information.”
It is plausible that if representations differ, then
the processes used to interrogate those represen-
tations might also differ, as indicated by the
data in Table 2.

2.5. Novel negatives task

Huesmann and Woocher (1976) and Roeber and
Kaernbach (2004), as well as the Wickens,
Moody, and Dow (1981) and Wickens, Moody,
and Vidulich (1985) experiments with words, used
a variant of the Sv task in which the stimulus ensem-
ble, and hence the recency of N-probes, was effec-
tively infinite: No N-probe occurred more than
once in the experiment, while P-probes occurred
once as set members and once as probes. Banks
and Atkinson (1974) compared this condition
with the standard Sv task and found differences,
such as a reduction in !b from 45 to 27 ms/item (in
the accuracy conditions), consistent with the
greater use of strength discrimination, as in the
hybrid model (Section 2.1). Using fixed sets, but
with an R–S interval of only 500 ms (see
Appendix D), Hockley and Corballis (1982,
Exp. 1) made the same comparison, with similar
findings: For npos≤ 6, !b was reduced from 38 to
20 ms/item, again consistent with the hybridmodel.

2.6. Conclusion: Procedure details matter

Subjects are flexible; details such as timing, empha-
sis on speed versus accuracy, availability of more
than one internal representation of information,
and previous experience may influence which

Table 2. Sf and Sv tasks versus Ashby task.

Task Exp npos Nsub βneg (ms/item) βpos (ms/item) βneg / βpos βneg – βpos (ms/item)

Sv Stern66.1 1–6 8 33.2+ 3.7 42.3+ 4.3 0.79+ 0.06 −9.1+ 2.4
Sv Stern66.1 2–6 8 35.4+ 4.2 38.2+ 5.8 1.09+ 0.25 −2.8+ 4.0
Sf Stern66.2 1,2,4 6 38.0+ 6.3 39.6+ 6.1 0.98+ 0.10 −1.6+ 3.0
Sf Stern67int 1,2,4 12 37.7+ 2.8 32.9+ 2.5 1.22+ 0.14 +4.8+ 3.5
Sf Stern69b.4eq 1,2,4 12 35.8+ 3.0 36.0+ 4.9 1.11+ 0.10 −0.2+ 2.9

Ashby Ashby93 2–5 4 59.2+ 6.9 36.6+ 3.5 1.62+ 0.16 +22.4+ 5.6
Ashby Schnei77 1,2,4 4 52.6+ 10.0 37.6+ 8.3 1.43+ 0.09 +15.0+ 3.7
Ashby Frank83 2–5 24 50.0 32.5 1.56 +17.5

Note. Stimulus ensembles consisted of the 10 digits, except for Exps. Ashby93 (11 consonants) and Schnei77 (9 digits for two subjects,
9 consonants for two subjects). See Appendix F for sources.

21Slope ratios in Exp. Ashby93 (1.33, 1.36, 1.88, and 1.90) differed markedly across the four subjects, with two subjects having
values close to 2.0.
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process or mixture of processes is selected to deal
with the challenges in an experiment. Thus, while
we might hope that varying the procedure that
gave rise to a hypothesized process may be a new
way to study that process, it may, instead, cause
subjects to use a different process, or a mixture of
processes such as the one embodied in the
Atkinson and Juola (1974) hybrid model.

3. THE LISMAN–IDIART–JENSEN
(LIJ) NEUROPHYSIOLOGICAL
MODEL FOR MEMORY SCANNING
AND MEMORY SPAN

3.1. Nested brain oscillations

As mentioned in Section 1.3, new ideas about brain
function have increased the plausibility of a rapid
sequential process such as SES. In this section,
we consider a proposed neural process that might
underlie serial exhaustive scanning.

Lisman and Idiart (1995) suggested that the
memory of a series of items could be maintained
by a two-level hierarchy of brain oscillations, with
each cycle of the faster gamma oscillation (20–
100 Hz) corresponding to the (re)activation of the
neurons in a cell assembly that represents one of
the items, and with the sequence of faster cycles
nested within each cycle of the slower theta oscil-
lation (5–8 Hz).22 What I shall call the “LIJ
model” of a time-compressed dynamic memory23

was further developed by Jensen and Lisman
(1996a, 1996b, 1998), who suggested that such a
process could maintain the memory of short lists of
either known items (with representations in LTM)
or novel items, and could also drive an exhaustive
process of sequential comparison. (See also Jensen
& Lisman, 2005, and Lisman & Jensen, 2013, and

the references therein). Because each item’s rep-
resentation is activated at a different phase of the
theta oscillation (“cross-frequency coupling”), such
a process could represent the order of the items, as
well as their identities (e.g., Siegel, Warden, &
Miller, 2009). The capacity of this buffer memory
—the maximum number of items that it can
contain, corresponding to the memory span—is
the number of gamma periods that fit, along with a
fixed amount of “dead time”, within a theta period.

Two variants of the LIJ model were offered to
explain performance when npos is less than the
capacity: In one variant (adapting-theta), the theta
period is shorter when fewer items are being main-
tained. In the other variant (resetting-theta), the
theta phase is reset to zero once the probe has been
identified and any ongoing activation sequence has
been completed (which contributes a variable incre-
ment to the RT). Jensen and Tesche (2002) used
magnetoencelphalography to examine theta oscil-
lation during an Sv task and found that whereas
theta power increased with npos , theta frequency
did not change, evidence against the adapting-
theta variant.24 Also, using intracranial recording
and an Sv task with letters, Rizzuto et al. (2003)
found evidence for phase resetting, especially upon
probe presentation. To explain the exhaustiveness
of the search, Jensen and Lisman (1998) assumed
that responses could occur only at the trough of
the theta cycle. (They did not discuss the possibility,
considered in Section 11, that what is serial is
an activation process that is followed by simul-
taneous comparisons, and that therefore must be
exhaustive.)

In recent years, the idea that brain oscillations
underlie the maintenance of information in
working memory has received increasing
support.25 A critical feature of the LIJ model is the
idea that the sequential maintenance process also

22A similar proposal was made by Horn and Usher (1992).
23
“Time compressed” because the rate of item activations in the memory might be as much as 50 times greater than the rate at

which the items were presented; “dynamic” because the memory is maintained by a repeating sequential activation process.
24However, evidence supporting theta adaptation in the rat is provided by Geisler et al. (2010).
25See, for example, Sederberg, Kahana, Howard, Donner, and Madsen (2003), Siegel et al. (2009), Axmacher et al. (2010),

Fuentemilla, Penny, Cashdollar, Bunzeck, and Duzel (2010), Kawasaki, Kitajo, and Yamaguchi (2014), Lisman and Jensen (2013),
Lisman (2010), Roux and Uhlhaas (2014), and references therein. See also Schon, Newmark, Ross, & Stern (2016), who found activity
in the parahippocampal region that increased with npos during the probe delay, but who unfortunately used the novel negatives task.
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plays an important role in information retrieval, and
that “readout” from the dynamic, time-compressed
buffer, and comparison of its contents, can occur
at the same rate as the maintenance process (and
does so in high-speed memory scanning).26

Several elaborations of the model would be
needed for a complete and persuasive account.
First, a comparison process or processes would
have to be specified by which members of the P-
set are compared to the probe. If the current
version of the model is to explain the RT data,
then, irrespective of whether such a comparison
process is serial, parallel, or overlapping, any
delay that it adds to the RT would have to be
independent of npos . (See Section 11 for a discus-
sion of serial comparison versus serial activation,
and why it would be critical for the model
whether and how the RT is influenced by the
similarity of an N-probe to one or more
members of the P-set.) Second, one would need
evidence that supports the idea, assumed to
explain the exhaustiveness of the search, that
motor responses can occur only at the trough of
the theta cycle.27 Third, we would have to under-
stand how the time-compressed memory could
support slower sequential processes, such as
ordered recall of the sequence of items, or the sub-
stantially slower scanning processes that are
employed when sequence or order information
must be retrieved from short lists.28,29

3.2. The “skip” feature of the LIJ model

In both variants of the LIJmodel, the probability, pa,
that a single scan produces a response can be less

than 1.0; if there is no response, the scan is repeated.
Because pa (which is not influenced by npos) does not
change with repeated scans, the number of scans
required for a response has a geometric distribution.
This “skip” feature contributes to the increases, with
npos , of the variance and highermoments of the RT.
Without this feature, neither variant of the model
can produce a third central moment that increases
with npos , as observed. Jensen and Lisman (1998)
fitted their models to two sets of data: Mean values
over the 12 subjects of the first three central
moments for N-trials in Exp. Stern67int1 (shown
in Figure 1, panels H1, H2, and H3), which used
the Sf task, and RT distributions pooled over P-
trials and N-trials for each of the four subjects in
Exp. Ashby93.30 For the latter data set, the esti-
mates of pa for the resetting-theta variant of the
model range from .20 to .69 over subjects. The
value pa= .20 corresponds to a mean of five scans
before the response occurs and hence a slope of the
RT function of five times the gamma period. The
large individual differences in the estimates of pa,
together with the fact that it is influenced by
neither npos nor the number of scans already exe-
cuted, reduce the plausibility of the model for
these data. For the former data set, p̂ a= 0.78,
which corresponds to a mean of 1.3 scans per trial,
a more plausible value.

One of the surprising findings about memory
scanning shown by Kristofferson (1972b) is that
the rate does not increase with practice.31 In
Sternberg (1975) I suggested that this could be a
result of the process being practised in everyday
life, and so the rate is at asymptote when subjects
enter the laboratory. The LIJ model provides an

26The study by Zarahn, Rakitin, Abela, Flynn, and Stern (2006), in which it is concluded that maintenance and search involve
different brain regions, used the Ashby task and reported the mean slope of the RT function to be 61 ms/letter, substantially
greater than what is found for Sv or Sf tasks. It is important to ask the same question of those tasks.

27It is hard to believe that execution of an unrelated response must await the trough. If not, why must this response do so?
28Examples are recency judgements (Hacker, 1980; McElree & Dosher, 1993; Sternberg, 1969a, Exp. 8), and context recall

(Sternberg, 1967b; 1969a, Exps. 6, 7).
29Other challenges to the current version of the model, in particular, the exhaustiveness of the process, include the partial selectivity

of search of categorized word lists (Naus, 1974; Naus, Glucksberg, & Ornstein, 1972; see Sternberg, 1975, Section 7.2) and the fact
that in a procedure that usually elicits fast exhaustive search, the process for some subjects is slower and self-terminating (see Sternberg,
1975, Section 7.3).

30As discussed in Section 2.4, because Exp. Ashby93 used simultaneous visual presentation of the P-set, and also because of prop-
erties of the mean data, it can be argued that the process underlying those data differ from that underlying the Sf or Sv tasks.

31See Sternberg (1998), Fig. 14.15, for additional evidence.
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alternative: If the scanning process is driven by a
gamma oscillation, which serves other functions
that include maintenance of information in AM,
then prior search practice need not be postulated.
However, if something does have an effect on
the scanning rate, then the LIJ model suggests
that we may find a corresponding change in the
gamma period.32 Multiple sclerosis (MS) provides
an example of an effect on the scanning rate:
Using an Sv procedure, Archibald and Fisk
(2000) found that, relative to controls, the scan-
ning rate for their subjects with MS is 80%
slower than for normal, and Rao, St. Aubin-
Faubert, and Leo (1989) found it to be 47%
slower.33 Other studies (e.g., Cover et al., 2006;
Nistico et al., 2013) have shown that MS alters
oscillatory patterns, but I have found no reports
of increased gamma period.

3.3. Tests of the LIJ model

Supporting the model, Kaminski, Brzezicka, and
Wrobel (2011) found that individual differences
in memory span vary with the “theta–gamma
ratio”—the number of gamma periods (which
ranged from 21 to 39 ms) that fit into a theta
period (which ranged from 118 to 222 ms).
However, doubts have been expressed about this
conclusion.34 In an attempt to test the account
that the LIJ model provides of the memory
span, Vosskuhl, Huster, and Herrmann (2015)
determined each subject’s theta frequency that

was most strongly coupled to oscillation in the
gamma range, and attempted to drive it at a
lower frequency (chosen to increase the forward
digit span by one) by delivering alternating
current stimulation (tACS) to the scalp at that
lower frequency. They succeeded in increasing
the digit span during stimulation, supporting
the LIJ model.35

In a daring attempt to test the LIJ model by
modulating the gamma frequency fγ, and hence
the scanning rate, Burle and Bonnet (2000) deliv-
ered click trains in a procedure pioneered by
Treisman, Faulkner, Naish, and Brogan (1990),
while subjects performed the Sf task with
npos= 1, 2, and 4 digits. For an interval of
about 500 ms preceding the probe, subjects
heard a train of clicks of frequency fc at or near
a subharmonic (half) of the assumed gamma fre-
quency. Other findings from this procedure indi-
cate that when twice the click frequency 2fc is
only slightly above or below fγ, the latter
changes in the direction of 2fc. (Thus, the point
at which the effect changes sign provides an esti-
mate f̂g of the normal fγ.) Analysis of the RT data
showed that the scanning rate did indeed change
as expected: The effects on RT of the click train
tended to increase with npos . Also, !b (36 ms/
digit) was less than f̂g (about 41 ms/digit), as
expected if skipping occurred on some trials
(but not if there is no skipping; see Section
3.4). If this finding were persuasive, it would be
strong evidence for the seriality of the SES
model, as well as support for the relation,

32An alternative is an effect on pa, if that feature of the model is retained.
33Given the large effects that feedback and reward can have on performance in these tasks, described in Appendix B, there may be

special concerns about differences in motivation between clinical populations and their controls. Also, the possibility of strategy differ-
ences being responsible for slope effects cannot be overlooked. As discussed in Sternberg (1975, Section 7.3), greater mean slopes are
sometimes associated with βneg ≈ 2βpos , suggesting a self-terminating search strategy. Both of these reports of slower scanning rates by
subjects with MS claim no significant interaction of slope with response type, but neither of them provides the data separately for P-
trials and N-trials.

34 “… determinations of oscillation frequencies were very noise sensitive, raising doubts about the conclusion. Rigorous testing of
this relationship will require resolution of the controversy about which brain regions are responsible for short-term memory
maintenance and better methods for noninvasive measurement of the oscillatory frequencies at those locations.” (Lisman &
Jensen, 2013, p. 1005)

35That they actually lowered the ongoing theta frequency was inferred indirectly, as they were not able to measure it during the
stimulation. They assumed that their stimulation would not change the relevant gamma frequency. In an improved version of such
an experiment, theta and gamma would be measured and an attempt would also be made to drive theta at a higher frequency, as
well, chosen to decrease the span.
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embodied in the LIJ model, between the gamma
oscillation and the scanning process.36

The most promising test thus far was recently
carried out by Bahramisharif, Jensen, Jacobs, and
Lisman (2016), who analysed intracranial record-
ings while subjects performed an Sv task with
npos= 3 letters. During the 2 s probe delay, while
the letter sequence was being maintained in
memory, they recorded activity at brain sites
“tuned” to one of the letters (Jacobs & Kahana,
2009), for sequences in which that letter occupied
the first, second, and third serial position. They
found that the theta phase at which gamma
power was maximum at those sites depended sys-
tematically on the serial position of that letter in
the three-letter sequence, with the mean phases
associated with the first and third positions differ-
ing by 180°. This remarkable discovery supports
the idea that maintenance of a P-set involves
sequential activation of its members.

For other tests that bear on the LIJ model, see
Sections 11 and 12.

3.4. Modification of the LIJ model
suggested by the rat brain

In the LIJ model, the gamma period has zero var-
iance. However, Atallah and Scanziani (2009)
have shown that in the hippocampus of the rat,
the periods of gamma oscillations of the local
field potential have a very large range: Their
paper provides examples of periods from 11 to
35 ms in an awake, moving rat, and from 12 to
44 ms and 11 to 47 ms in two different anaesthe-
tized rats. I am not suggesting that details of such
data agree with details of gamma oscillations in
awake humans performing a particular task. But
because these are among the best data we have
just now that inform us about gamma-period varia-

bility, they should be considered. In addition, intra-
cranial recordings from humans also indicate
considerable variability in the gamma period.37

Atallah and Scanziani (2009) find that the duration
of the period that follows a peak is positively corre-
lated with the height of the peak, and conclude that
a higher peak reflects more neural activity, which
generates more inhibition, resulting in a longer
delay before the next peak. This peak-delay property
helps to explain the effect of item complexity on the
scanning rate, as discussed in Section 4.

To determine whether gamma-period variability
could contribute appropriately to the observed
changes in the RT distribution with npos , thus
obviating the need for the “skip” feature, I analysed
the data collected by Atallah and Scanziani from
four anaesthetized rats.38

If the process in memory scanning that depends
on npos is driven by a sequence of npos successive
gamma periods, then the RT should include the
duration of such a sequence. The distributions of
the cumulated durations of a set of successive
gamma periods depends on any covariances
among them as well as on variability of a single
period. One way to avoid the complexity this
implies is to consider the distributions of the cumu-
lated durations of different numbers of successive
periods. Figure 1 shows the relation between the
number of successive gamma periods, nγ, and
means over the four rats of each of the first three
moments of their cumulated durations. For any
nγ, the estimated duration of nγ successive periods
depends on precisely locating two peaks. Because
it is plausible that error in their locations is inde-
pendent of nγ and that the true cumulated duration
and any measurement error are approximately
uncorrelated, any measurement error should only
add constants to the estimated moments, indepen-
dent of nγ.

36However, the effects were small; the analysis was complicated by requiring correction for a global effect of fc on RT; the foreperiod
as well as the number of clicks the subject heard before seeing the probe were confounded with fc; it appears to have been assumed (or
found) that there were no individual differences in fγ; and, as in the Vosskuhl et al. (2015) study, the evidence that the oscillation fre-
quency was actually influenced by fc was indirect. In an improved version of such an experiment, tACS might be used (Helfrich et al.,
2014), as Vosskuhl et al. did, instead of clicks; if possible, fc values would be determined in relation to measurements of individual
gamma frequencies; and the effect of the manipulation on fγ would be measured.

37Personal communication, Joshua Jacobs, December 2014.
38See Appendix C for an outline of the analysis, and some of the findings for individual rats.
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The mean values of the first three moments,
shown in the top row of Figure 1, increase remark-
ably linearly for 1≤ nγ≤ 6, consistent with the
contributing gamma periods being identically dis-
tributed and stochastically independent. Also, the
direct estimates of the covariance of successive
periods shown for individual rats in Table C1 in
Appendix C are negligible. The plots of the first
three moments of human RT data in the second
row of Figure 1 also increase remarkably linearly,
but with npos; they are there to suggest that a modi-
fication of the LIJ model in which there is no “skip-
ping”, but where the gamma period is variable,
might be equally effective in accounting for
human RT data.39

4. SCANNING RATE AND THE
MEMORY SPAN

4.1. Cavanagh’s discovery and further tests

Scanning rates for items drawn from different
ensembles differ systematically. The remarkable
linear relationship that Cavanagh (1972) discov-
ered between these variations in scanning rate and
variations in the span of immediate memory for
items from these ensembles has aroused consider-
able interest and has invited several replications
(Brown & Kirsner, 1980; Lass, Lüer, Becker,
Fang, & Chen, 2004; Puckett & Kausler, 1984)
or similar attempts (Puffe, 1990).40 The most
extensive such replication is that of Lass et al.
(2004), in which performances with each of seven
stimulus ensembles in each of two different
languages (German and Wu Chinese) were
studied in different groups. As shown in Table
16.1 of Lass et al. (2004), for each of these 14

data sets, measurements were made of a large
number of subjects: from 48 to 144 for span, and
from 48 to 96 for scanning rate.41

Cavanagh considered the relationship between
the time per item (slope) in memory scanning
and the reciprocal of span (which can be considered
space per item if the span reflects a fixed “space” or
“capacity”). However, span is measured in different
ways in different experiments—for example, the
maximum length of a list recalled with 100% accu-
racy, or with 50% accuracy, or the list-length to
which a staircase procedure converges. It follows
that the origin of the scale of memory span is arbi-
trary, which means that taking its reciprocal may
distort its relationship with other measures. An
alternative is to consider the relationship between
memory span itself and the scanning rate in items
per second (the reciprocal of the slope of the RT
function, a scale whose origin is not arbitrary), as
Lass et al. (2004) have done. Their data are
shown in Figure 2, along with Cavanagh’s,
plotted in the same way. Parameters of the fitted
linear functions are shown in Table 3, along with
corresponding parameters of the data assembled
by Cavanagh.42

As can be seen in Figure 2, for the six ensembles
whose members are nameable, memory spans and
scanning rates are both higher for Chinese than
for German subjects. Nonetheless, the fitted linear
functions have identical slopes and almost equal
zero-intercepts: The same law appears to apply to
both language groups. The difference between the
zero-intercepts of theLass et al. andCavanagh func-
tions may result from differences in the definitions
of the memory span. The absence of feedback and/
or rewards for speed in the studies used by
Cavanagh might contribute to their lower scanning
rates for the ensembles associated with faster rates,

39Although both distributions are positively skewed for all values shown of nγ and npos , and the Pearson moment coefficient of
skewness decreases as both nγ and npos increase, the rate of decrease is slower for the RTs.

40In an effort to collect memory-span and memory-scanning data in one procedure, Puffe used a large range of P-set sizes, fitted
bilinear RT functions to the data as Burrows and Okada (1975) had done, and assumed that the breakpoint of the bilinear function is a
measure of the memory span. Unfortunately, no measure of precision of the estimated spans was provided.

41Another reason to trust these results (in addition to the large sample sizes) is that all conditions included feedback on speed and
accuracy as well as performance-dependent payoffs, whose importance is discussed in Appendix B.

42These data have been treated as if only the span measure is subject to error.
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and the resulting greater slope. It is not obvious what
distinguishes ensembles whose items occupy more
or less of the capacity of AM: Is it familiarity, or,

as suggested by Cavanagh (1972), is it the size of
the internal representation—the number of features
required for its specification? If scanning time per
item and space per item are both proportional to
size, as he suggested, and memory capacity is
measured in features, as he suggested, this would
explain the relationship he discovered. I shall call
this aspect of the items in an ensemble their
“complexity”.

Together with the invariance of linearity and β

across 4000 trials of practice in the Sf task
(Kristofferson, 1972b), the relation of β and
memory span supports the idea that even though

Figure 2. Immediate memory span versus estimated memory scanning rate for Chinese-speaking and German-speaking subjects working with
seven stimulus ensembles: R=Random shapes; S=Geometrical shapes; nS=Names of geometrical shapes; C= Colours; nC=Names of
colours; D=Digits; nD=Names of digits. Based on Table 16.1 of Lass et al. (2004). Also shown are values for the data assembled by
Cavanagh (1972), from diverse studies, 32 providing measures of scanning rate and 13 providing measures of memory span, plotted in the
same way. In order of increasing scanning rate, the ensembles in Cavanagh’s data are nonsense syllables, random forms, words, geometric
shapes, letters, colours, and digits. Scanning rates are reciprocals of the means of reported RT function slopes for each stimulus ensemble.

Table 3. Parameters of fitted linear functions: memory span (items)
versus scanning rate (items/s).

Data

Slope Zero intercept

Mean Interval Mean Interval

Lass et al.: German 0.17 (0.09, 0.31) 1.3 (−1.3, 2.2)
Lass et al.: Chinese 0.17 (0.09, 0.30) 1.5 (0.4, 2.7)
Cavanagh 0.26 (0.21, 0.32) −0.3 (−1.3, 0.8)

Note. Intervals are 95% bootstrap confidence intervals.
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many laboratory procedures do not elicit SES
(Section 2), it represents a fundamental operation
of human information processing.

4.2. Memory span versus scanning rate and
the LIJ model

Recall the peak-delay property described by Atallah
and Scanziani (2009): The gamma period that
follows a higher peak in the local field potential is
prolonged. Suppose (a) this property also applies
to humans, together with (b) a more intensive
process generates more neural activity and hence a
higher peak, and (c) activation (or comparison) of
more complex items requires a more intensive
process. The gamma period will then increase
with item complexity. If we also assume that com-
plexity does not influence the theta period, then, as
pointed out by Jensen and Lisman (1996c), the LIJ
model can explain the linear relation between
memory span and scanning rate across levels of
item complexity. However, for this explanation to
work, we must also assume that the skip prob-
ability, pa, is not only invariant across npos values,
as mentioned in Section 3.2, but is also invariant
across levels of item complexity.

4.3. Two kinds of correlation between
memory span and scanning rate

Stimulated by Cavanagh’s discovery of the corre-
lation across stimulus ensembles, several investigators
have searched without success for correlations across
subjects of measured scanning rates and memory
spans. These include Brown and Kirsner (1980),
Puckett and Kausler (1984), Cowan et al.
(1998),43 and, most recently, Lass et al. (2004), in
an experiment with 48 subjects. Hulme, Newton,
Cowan, Stuart, and Brown (1999) found a corre-
lation across subjects between the memory-scan-
ning rate for one-syllable words and memory

span, but their memory-scanning data were
highly atypical, with a slope of about 67 ms/word
for one-syllable words, and a zero intercept of
about 760 ms.44

Whether to expect such a correlation across sub-
jects depends on themechanism that connects scan-
ning rate and memory span, and how different
features of that mechanism vary from one subject
to the next. For example, consider the LIJ model,
and suppose that, as mentioned above, the gamma
period, but not the theta period, increases with
item complexity, thus explaining the linear relation-
ship between memory span and scanning rate, across
stimulus ensembles. However, if the primary variation
across subjects was in the theta period and not the
gamma period, we would not expect subjects with
larger memory spans to have faster scanning rates.
Or, if the two periods varied proportionally across
subjects, then the scanning rate would vary across
subjects, but not the memory span.

5. BEHAVIOUR OF THE RT
VARIANCE

5.1. What do we expect from the serial
exhaustive search model?

Suppose, as indicated in Figure 4 of Sternberg
(1975), that the serial-comparison process is one
of four stages in item recognition, and that the
RT is the sum of their durations. How do we
expect the RT variance, var(RT), to be influenced
by npos and by response type (positive or negative)?

Unlike predictions based on the SESmodel about
the behaviour of RT , two additional requirements
must be satisfied to be certain about what has been
claimed to be its predictions for var(RT). First, we
must elaborate the model by adding the assumption
that durations of the individual comparisons within
the serial-comparison process are mutually uncorre-
lated as well as being uncorrelated with the durations

43They believe that the correlation they found was between a slower memory-search process and memory span.
44A different connection between memory span and scanning rate was suggested by Cowan et al. (1998), Cowan et al. (2003), and

Hulme et al. (1999), who have proposed that the time intervals between items during immediate memory recall reflect a rapid sequen-
tial activation process akin to high-speed memory scanning.
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of theother stages.45 Second, even if theSESmodel is
elaborated in this way, we have to estimate variances
in such a way as not to introduce spurious corre-
lations. (For example, because practice might influ-
ence the durations of more than one stage, the data
that provide variance estimates should not be
pooled over levels of practice.)

If we measured the RT variability separately for
each P-set and probe combination, and then com-
bined those measures, the above requirements
would be sufficient for the predictions to be valid,
but I am unaware of any analyses that do this.
The result is that there are additional issues
related to possible differences among P-sets of the
same size, and to differences among probes. Even
in analyses of data from the Sf task, I know of
none in which variances (or means) are estimated
separately for different probes. If probe encoding
for recognition shares properties with probe encod-
ing for naming, then priming effects, which may
depend on npos (Kirsner, 1972), may mean that
the magnitude of the contribution to var(RT)
from probe encoding may not be independent of
npos . Furthermore, if different P-sets of the same
size produce different RTs, in addition to any
effects of probe differences, then in the Sv task as
normally used, contributions to var(RT) from
P-set differences cannot be separated from effects
of npos itself. Because variances in the Sv task but
not the Sf task must include this source of variation,
we may find greater variances in the former.

Only if the elaborations of the SES model are
valid, and any effects of probe differences and
P-set differences depend minimally on npos , and
data are appropriately analysed, can we predict that
the increase of var(RT) with npos should be linear,
as claimed by Dosher and McElree (1992, p. 401),
and that the rates of increase should be the same

for P-probes and N-probes, as claimed by
McElree and Dosher (1989, p. 347).46

If the variance is estimated from data pooled over
probes, as is typical, and probes differ in encoding
duration, then as npos grows, and especially if the
number of different N-probes decreases as npos
increases, var(RT) would be expected to increase
fasterwithnpos forP-probes than forN-probes; simu-
lations suggest that the growth would be nonlinear.

5.2. What is found?

Even when individual RTs from my Sf experiments
of the 1960s have been retained, the identity of the
probe associated with each RT has not been pre-
served, so that a suitable within-probe estimate of
var(RT) is not possible.47 Also, the design of the
Sv task, with a different P-set on every trial, pre-
cludes removing any RT differences among P-sets
of the same size. Thus, the available RT variances
include these components in addition to the var-
iance of the scanning process itself.

Table 4 providesmean estimates of var(RT) onN-
trials and P-trials as functions of npos in five exper-
iments that used either Sf or Sv procedures, together
with slopes of fitted linear functions and the percen-
tage of variance explained by these linear functions.
Where available, standard errors of the slopes are
also provided. Also given are the total number of
trials contributing to each tabulated value.48 For
Exps. Stern66.2 and Stern67int, npos was changed
by altering the mapping of probes onto responses,
while keeping the structure of the sequence of
probes the same. Variance values in the rows labelled
“all” for these experiments are weighted means of
var(RT) for P-trials and N-trials, weighted by their
relative frequencies of 4/15 and 11/15, so that the dis-
tribution of probes that contributes to these variances

45It is not implausible that such independence might be violated. For example, if the quality of encoding varies from trial to trial,
and influences the comparison time, then this could create a negative covariance between the durations of the encoding and comparison
stages, as well as a positive covariance among comparison durations.

46Schneider and Shiffrin (1977, p. 30) mention the need to elaborate the model.
47However, analyses of components of variance for Exps. Stern75a and Stern75b, in which the stimulus ensemble consisted of

(highly familiar) digits, showed significant contributions of probe differences on both P-trials and N-trials.
48Error rates are sufficiently low so that the number of trials is a good approximation of the number of trials on which responses

were correct.
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is independent of npos .
49 The large standard errors of

the estimated slopes are reflections of the large
sampling error of the variance and its sensitivity to
outliers. Except for the experiment with the smallest
sample sizes, the growth of var(RT) is well approxi-
mated by a linear function, especially when one con-
siders the large sampling variance of var(RT).
Excluding Exp. Stern66.1, the mean ratio ĝneg/ĝpos
is 1.05+ 0.07 indicating that the slopes are close to
equal. The data suggest that even for the smaller
npos values, the Sv task produces higher variances,
possibly indicating the effect of P-set described
above. The extremely high variances in Exp.
Hock84 may be a consequence of the special features
of that experiment and its analysis, described in
Section 2.2.

From Table 4 we can conclude that for the Sf
task, var(RT) grows approximately linearly with

npos and with approximately equal slopes for posi-
tive and negative responses. However, for the Sv
task, the data (except for the smallest npos values)
are too variable to draw any conclusion with confi-
dence. As shown in Sections 2.2, 2.4, 5.2, and 6.2,
there is evidence for the Sf and Sv tasks eliciting the
same process. Why, then, should there be differ-
ences in var(RT) between them? One possibility
is that in the Sv task, interference from the P-set
presented on one or more previous trials occasion-
ally lengthens RTs.50

To support their claim that the var(RT) grows
more rapidly for positive than for negative
responses, Townsend and Ashby (1983, p. 124),
Dosher and McElree (1992, p. 401), and
McElree and Dosher (1989, p. 347) all cite
Schneider and Shiffrin (1977). The most relevant
data are from Schneider and Shiffrin’s

Table 4. RT variances (ms2) in five experiments using Sf and Sv tasks.

Task
Experiment

Resp Trials

npos

Slope (γ)
Pct

Nsub 1 2 3 4 5 6 Lin

Sf Stern66.2 neg 528 3088 5088 7400 1397+ 260 97.8
6 pos 192 2694 5110 6643 1238+ 536 90.2

all 720 2983 5094 7198 1355+ 255 96.4

Sf Stern67int neg 950 3578 5478 7315 1199+ 419 96.1
12 pos 346 5062 6005 8374 1115+ 473 99.7

all 1296 3974 5619 7597 1177+ 383 98.1

Sf Stern69b.4eq neg 600 5354 6621 8547 1050 99.5
12 pos 600 4831 5479 8337 1206 97.4

Sv Stern66.1 neg 96 5420 8756 9445 6731 34,740 14,857 3498+ 1837 35.5
8 pos 96 4819 6840 18,308 8307 26,539 36,959 5994+ 2589 76.8

Sv Hock84 neg 1320 37,109 51,548 69,914 89,033 17,414 99.6
6 pos 1320 30,781 45,527 54,552 87,168 18,819 99.1

Note. Exp= experiment; Nsub= number of subjects; Resp= response; neg= negative; pos= positive; all=weighted means of values
for the two responses; Trials= approximate number of trials contributing to each tabulated value; Slope= slope of a linear function
fitted by least squares, with+SE where available. Pcnt Lin= percent of total variance of the means explained by the fitted function.
See Appendix F for sources.

49This depends on assuming that the contributions of probe differences to RT in the Sf task are unaffected by npos and are the same
for a probe, whether it is a P-probe or an N-probe.

50Sample sizes are especially small in Exp. Stern66.1: only 16 trials per subject per value of npos . This experiment was continued for
two additional exploratory sessions in which between-subject differences in presentation rate and probe delay were introduced—differ-
ences that appeared to have no systematic effect on RT . It is helpful to consider the mean variances over the three sessions. For these
combined data, linear functions fit better (Pcnt Lin= 99.2 for N-trials; 88.8 for P-trials), and the slopes are closer to being equal
(4,763+ 1,778 for N-trials; 3,764+ 1,350 for P-trials).

2040 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2016, 69 (10)

STERNBERG



Experiment 2, the “varied set” condition, with
“frame-size” (i.e., display size) 1, an Ashby task.51

6. BEHAVIOUR OF THE SHORTEST
REACTION TIME

6.1. What do we expect from the serial
exhaustive search model?

As npos increases, what do we expect of the shortest
RT, min(RT), in a sample? Suppose that five con-
ditions are satisfied:

1. The duration of a single comparison has a posi-
tive minimum.

2. The base-time distribution is not influenced by
npos .

3. The durations of all the comparisons and the
base time are stochastically independent.

4. The data have been analysed so as not to disturb
this independence.

5. The data on all included trials have resulted
from successful implementation of SES.

Then the min(RT) to execute the process described
by the SES model should increase with npos , and
should do so on both P-trials and N-trials.52

However, when any of these conditions is violated,
it becomes less clear what to expect. Here are four
examples of possible violations:

Fast guesses. If the errors on some trials result from
fast guesses (Ollman, 1966; Yellott, 1971) rather
than “stimulus-controlled responses”, then the
expected number of correct responses that result
from fast guesses is the same as the number of
errors that do. If the error rate increases with npos ,
then this may mean that the proportion of correct
responses that are fast guesses increases with npos .
This effect could cause min(RT) to actually become

shorter, as npos increases, hiding any increase in
min(RT) associated with “stimulus-controlled
responses”. (This is one reason why the estimate of
a low quantile, such as the 10% quantile, may be pre-
ferred to the estimated minimum as a characteriz-
ation of the low tail of the RT distribution; another
reason is that unlike a low quantile, the sample
minimum is biased high, by an amount that
depends on sample size.) The effect of a few fast
guesses on the minimum is likely to be substantially
greater than their effect on the mean or median.

Differences in sample size. For any plausible RT dis-
tribution, the expected value of the shortest RT is
inversely related to the sample size. In most exper-
iments, the numbers of trials are approximately
equal for different values of npos . Therefore, as
npos grows, the number of trials for each item in
the set decreases, including the most accessible
item. Given item differences, and depending on
details of distributions, this could cause the shortest
RT to increase as npos grows.

53

Operation of the Atkinson–Juola hybrid model (Section
2.1). The strength criteria in the Atkinson–Juola
hybrid model do not vary with npos . Hence, even
if strength discrimination is used on only a few
trials, the expectation of min(RT) will be short
and independent of npos . It is worth noting that
as npos increases in the Sv task, the recency of the
most recent N-probe decreases, while that of the
most recent P-probe remains invariant. Thus, to
the extent to which the hybrid model operates
and some responses are based on strength discrimi-
nation, min(RTneg) should increase more slowly
with npos than min(RTpos) does.

Encoding differences. We know that var(RT)
increases precipitously with npos (Table 4;

51Dosher and McElree (1992, p. 401) also cite Schneider and Shiffrin (1977) to support their assertion that “Predictions of linear
increases in variability… also fail”. However, the latter authors say (p. 30) that “On the whole, despite a certain amount of noise in the
data, the variances are approximately a linear function of the load”.

52If the five conditions are satisfied, and the positive minimummentioned in Condition 1 is large, then Dosher andMcElree (1992,
p. 401) are correct that the SES model predicts “that the minimum RT should depend fairly strongly on list length”.

53As examples of the effect of sample size and distributional shape and spread on the bias, for Gaussian, uniform, and exponential
distributions, respectively, as the sample size grows from 10 to 100, the sample minimum shrinks by about 96%, 28%, and 9% of the
standard deviation.
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Sternberg, 1975, p. 15 fn). Suppose that this is
partly due to an increase in the base-time variance,
possibly because the time to encode the probe varies
across members of the stimulus ensemble. Then, as
npos increases, the chance that a rapidly encoded
item is included increases for P-trials, and, as a
result, min(RT) could decrease for P-trials. (If nneg
decreases as npos increases, we should see the
reverse effect for N-trials.)

6.2. What is found?

Using the Sf procedure, with nested P-sets,
Lively and Sanford (1972) and Lively (1972)
reported that min(RT) in their samples increased
systematically with npos: For same-category

probes, min(RT) in the former study increased
at a rate that was 57% of the rate of increase of
the mean; in the latter study, combining speed
and accuracy conditions, min(RT) increased at
56% of the rate of increase of the median.54

Similar findings for Sv and Sf tasks (Exps.
Stern66.1 and Stern69b.4eq) are presented in
Figures 3 and 4. To facilitate comparison, the
scales in these figures are the same. Because the
sample minimum is sensitive to outliers, and is
also a biased estimator of the population
minimum to an extent that depends on sample
size, 10% quantiles (which are median-unbiased)
are also shown.55 Means are also shown, because
the relation between minimum and mean, and its
dependence on npos , are of interest. The ratios of

Figure 3. Mean values over six subjects of means, 10% quantiles, and minima as functions of npos for N-trials (panel A) and P-trials (panel B)
in Exp. Stern66.1, which used the Sv task. Equations of the lines, fitted by least squares, are, for N-trials and P-trials, respectively, 348+
21.8npos and 309+ 21.5npos (minima); 365+ 23.2npos and 334+ 23.4npos (10% quantiles); and 414+ 33.2npos and 379+ 42.3npos
(means).

54These findings were used in Section 6.1 of Sternberg (1975) as evidence against the search being self-terminating. In both
studies, the rates of increase of min(RT) with npos on P-trials and same-category N-trials were both significantly greater than zero,
but the difference between these rates was not significant. Also in that section, the approximately linear and equal rates of increase
of RT variance were described, with the rate of increase used as additional evidence against the search being self-terminating.

55Quantiles were estimated using the Hyndman and Fan (1996) Type 8 median-unbiased estimator.
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the rates of increase of minimum to mean are
similar to those mentioned above, and to each
other: 61+ 7% for the Sv task, and 62+ 9%
for the Sf task.56 The substantial increase of the
minima with npos in Figures 3 and 4 argues that
strength discrimination, as in the hybrid model,
does not play an important role. Also, except
for the means in Figure 3, the differences
between slopes for P-trials and N-trials in all
six comparisons of Sv and Sf results do not
exceed 1 ms/item, supporting the idea that the
same process (SES) underlies both.

However, for one of the six subjects in the Sv task
of Exp. Hock84, the rate of increase with npos of the
minimumRT onN-trials was smaller, possibly sub-
stantially smaller, while the rate of increase of the
mean RT was greater.57 Based, apparently, on only
these data, it has been concluded that, as npos
increases, “Distributions of RTs… show only tiny
shifts of the minimum…” (Dosher & McElree,
1992, p. 401), “the fastest times are the same”
(Dosher & Sperling, 1998, p. 240), and “… for
the memory search task, the leading edge stays rela-
tively constant…” (Hockley, 1984, p. 604).

Figure 4. Mean values over 12 subjects of means, 10% quantiles, and minima as functions of npos for N-trials (panel A) and P-trials (panel B)
in Exp. Stern69b.4eq, which used the Sf task. Equations of the lines, fitted by least squares, are, for N-trials and P-trials, respectively, 318+
22.7npos and 285+ 21.7npos (minima); 356+ 27.2npos and 308+ 26.2npos (10% quantiles); and 408+ 35.8npos and 358+ 36.0npos
(means). In Panel A, the large, light squares, described by 303+ 28.2npos , are means of minima based on the distribution analysis of data
from Exp. Stern67int1, discussed in Section 6.3. Based on between-subject differences in Exp. Stern69b.4eq, the standard error of the
mean slope of the minimum is 5.8 ms.

56For each subject, these ratios were calculated separately for P-trials and N-trials, and then averaged. The values reported are the
means and standard errors of these averages over subjects.

57The histograms of RTs on N-trials for this one subject have been published at least four times: by Hockley (1984, Figure 5),
Dosher and McElree (1992, Figure 3b), Dosher and Sperling (1998, Figure 25d), and Hockley (2008, Figure 2). Estimates of the
minima of these data have, themselves, never been reported, nor have any estimates of the precision of such estimates, nor have
this subject’s error rates, nor the histograms or minima for the other five subjects. Because the bin size in these histograms is
50 ms, and the bin that represents the shortest RTs in the sample (300–350 ms) is occupied for all npos values, all that we can say
with certainty about the change of the sample minimum as npos increases from 3 to 6 (and the mean RTover subjects increases by
about 147 ms), is that it lies between a decrease of 50 ms and an increase of 50 ms.
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What of the P-trials and the other five subjects? In
the absence of the RT distributions, I used the means
over the six subjects of the estimated parameters of the
ex-Gaussiandistributions forP-trials andN-trials that
Hockley fitted to his Sv-task data (1984, Figure 4),
and I simulated the distributions using a sample size
of 218 (the sample size per subject per npos value per
response type in the experiment). From 1000 replica-
tions, I determined themean values of theminima and
mean for each response type and each npos value, and
fitted the relations between these values and npos
with linear functions. The slopes (mean rates of
increase with npos) were similar for P-trials and
N-trials; their means were 16.7 ms/item for
minima, 35% of the 47.7 ms/item for means. Thus,
the increase with npos of min(RT) relative to RT ,
based on mean estimated ex-Gaussian parameters
for the six subjects, is less than what was found in
other studies, but was substantial, nonetheless.

I applied the same method to the data for npos=
2, 4, and 6 from the repeated negatives condition in
Exp. 1 of Hockley and Corballis (1982), which used
a variant of the Sf task with an ensemble of two-
syllable nouns.58 Starting with mean ex-Gaussian
parameters (measured from their Figure 2), and
using a sample size of 192 and, again, 1000 replica-
tions, I found that the mean rate of increase of
min(RT) with npos was 21.6 ms/item, 54% of the
rate of increase of the mean (40.2 ms/item),
similar to the percentages in other experiments
mentioned in Section 6.2.59

6.3. The shortest RT based on estimated
distributions of stage durations

Let us extend the SES model by assuming that the
durations of each of the npos successive comparisons

are identically distributed and stochastically indepen-
dent, as well as being stochastically independent of
the base time (the summed duration of other stages,
unaffected by npos). If we then let κr(base) and
κr(comp) be the rth cumulants of the base time and
comparison time distributions, respectively, and let
κr(RT) be the rth cumulant of the RT, we will have:

kr(RT ) = kr(base)+ npos × kr(comp). (1)

Thus, because cumulants are additive under these
conditions, κr(RT) will be a linear function of
npos , whose zero intercept is the rth cumulant of
the base time, and whose slope is the rth cumulant
of the comparison time. [Just as the slope of the RT
function provides an estimate of the mean compari-
son time, the slopes of the κr(RT) functions
provide estimates of the κrth cumulants of the com-
parison time, and similarly for the zero-intercepts
and the base time.] When I examined the mean
over subjects of estimates of the first four RT
cumulants for each npos value on N-trials in Exp.
Stern67int1 (which used the Sf task), I found the
first three to be beautifully linear.60 [In these
data, κ4(RT) increased with npos , but not linearly.]
Nonetheless, I fitted linear functions to all of the
first four cumulants of the RT and thus obtained
estimates of the corresponding cumulants of the
base-time and comparison-time distributions
(Sternberg, 1964), estimates that agreed, roughly,
with those from two other experiments.61 Given
the first four cumulants, one may be able to find a
corresponding distribution in the Pearson family
of distributions, a family that includes many
common distributions, including beta, exponential,
gamma, Gaussian, and others. The probability

58As the R–S interval was only 0.5 s, a variant discussed in Appendix D, conclusions for the Sf task must be tentative.
59Of course, the validity of these simulated minima depends on the goodness of fit of ex-Gaussian distributions to the data, about

which questions can be raised: Whereas only 4% of the memory scanning data sets in Hockley (1984) deviated significantly (p, .05)
from the ex-Gaussian distribution, 36% of the data sets from Exp. 1 of Hockley and Corballis (1982) did. And it is not clear what the
relation is of the distribution based on averaged parameters to the individual distributions that gave rise to the parameters that were
averaged. To support claims about the “leading edge”, it would be far better to determine the minima, or low quantiles, directly.

60The first three cumulants are the same as the first three central moments, which, for this experiment, are shown in Panels H1, H2,
and H3 of Figure 1. Because this method should ideally be applied to stable data from individual subjects, rather than means, the pro-
cedure described is a compromise. Nonetheless, it is worth determining where it leads.

61Also, the sets of estimated cumulants for each of the six distributions from the three experiments satisfied inequalities that are required if
the associated distributions are non-degenerate, unimodal, and contain only non-negative values (Johnson&Rogers, 1951;Mallows, 1956).
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density functions of the inferred distributions that I
found are, for the base time,

f (t)= c(t−299).67(51+ t)−11.23, (t ≥ 299ms)
0, (t, 299ms),

{

(2)

and for the comparison time,

g(t)= k(t−25.5)−.91(821.0− t)6.03, (25.5≤ t≤ 821.0ms)
0, (t, 25.5; t. 821.0ms),

{

(3)

where c and k are normalizing constants. These
functions show that there can be no base times
less than 299 ms, and no comparison times less
than 25.5 ms. Both density functions are positively
skewed and rise steeply from zero: The mode of f (t)
is at t= 321 ms (22 ms above its minimum); its
three quartiles are 326 ms, 350 ms, and 390 ms.
Because g(t) is monotonically decreasing, its
mode is at its first non-zero value (t= 25.5 ms).
Its three quartiles (25%, 50%, 75%) are 25.6 ms,
26.9 ms, and 38.5 ms, respectively, its median
only 1.4 ms above its minimum.

Thus, given the Pearson family, if we specify
the mean, spread, skewness, and kurtosis of
these data sets (i.e., specify the first four cumu-
lants), we arrive, remarkably, at estimates of the
population minima of f (t) and g(t), and, with
stochastic independence of the durations of suc-
cessive stages, and the additivity of their minima
that follows from it, we have estimates of the
growth with npos of the theoretically shortest
RT. To test this analysis, one could use the
inferred distributions to simulate the data, and
ask whether aspects of the observed distributions,
such as the minima, could be recovered.
Unfortunately, the observed minima of the RTs
in Exp. Stern67int1 are not readily available. I
therefore compared the simulation to the RTneg

data from Exp. Stern69b.4eq, another Sf
experiment.

The number of N-trials for each value of npos
per subject was about 50 in Exp. Stern69b.4eq,
and we expect the minimum RT in 50 trials to
be greater than the theoretical minimum. For
comparison to the obtained minima, then,
random sampling from the estimated distributions
was needed.

For each of 50 simulated trials, I added one
sample from the base-time distribution to the
sum of one, two, or four samples from the com-
parison-time distribution, thus simulating the cor-
responding convolutions, found the minimum of
each sum among the 50 simulated trials, and
repeated this for 10,000 simulated subjects.
Means of these minima are shown in Figure 4A.
Their values are 331.4, 359.2, and 415.9 ms
(described by 303+ 28.2npos ms), averaging
about 10 ms above values of the theoretical
minima of 324.5, 350.0, and 401.0 ms (described
by 299+ 25.5npos ms).62 As shown in Figure 4,
then, sampling from the inferred distributions for
N-trials in Exp. Stern67int1, the means of the
RT minima are found to increase with values
close to the means over 12 subjects of the directly
observed RT minima of samples of about 50 RTs
from N-trials in a different experiment (Exp.
Stern69b.4eq) that also used the Sf task. This
agreement, together with the plausibility of the
inferred distributions, supports the extended SES
model for the Sf task.63

6.4. Parallel comparisons and the shortest RT

It would be interesting to know whether any plaus-
ible model of parallel comparisons would be con-
sistent with a linear growth of the shortest RT
with npos , at a rate that is 50% or 60% of a linearly
increasing mean RT.

62This simulation shows that the change in the RT distribution as npos increases from 1 to 4 is associated with an increase in the bias
of the sample minimum, but that this increase is only 2.7 ms/item.

63Promising as these findings are, the experiments that provided the data used to estimate the distributions were not designed for
this purpose. More suitable experiments would provide more practice to achieve better stability, and an analysis that permitted removal
of any effects of nuisance factors such as probe differences.
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7. ACCESSIBILITY OF THE MOST
ACCESSIBLE ITEM AND THE
MIXED-RECENCY CONJECTURE

One reason why any effect of serial position on P-
trials is of special interest is that, without elabor-
ation, a model in which scanning is exhaustive
cannot explain it. Whereas the effects of serial pos-
ition on RTs for positive responses are relatively
small in Sv and Sf tasks,64 they are large in the
Monsell task. Indeed, what is striking about the
RT data in this task is that, given the serial position,
the effect on P-trial RTs of npos itself can be
minimal: Almost all that matters is the lag
between the probed item and the probe, and the
effect of npos on RT averaged over serial position is
almost entirely a consequence of larger sets being
associated with longer average lags. This is especially
true of the last serial position. As reported by
McElree and Dosher (1989, Tables 1 and 5), and
Monsell (1978, Figures 3b, 6c, and 7b), RT s for
the last serial position in the Monsell task are
shorter than those for any other position, and, as
shown in Table 5, are almost independent of npos:
The mean and median of its effects are 3.0 and
1.6 ms per item, respectively. Thus, in the Monsell
task the effect of npos on the accessibility of the
most accessible item is minimal.65

Thus, even if a strength criterion in this task is
influenced by npos , the separations between the
strength of the most accessible item and the criteria
for all the npos values must be sufficiently great so
that the effects on RT of the differences in separ-
ation are small. This could happen if the function
relating RT to the separation decelerates.

Why is the effect of serial position reduced when
the probe delay is lengthened? To explain this, at
least some of those who believe that the same

mechanism is employed in Sv and Monsell tasks
have proposed (without evidence) what I shall call
the “mixed-recency conjecture”. McElree and
Dosher (1989) suggest that whereas with a fast
presentation rate and a short probe delay, “subjec-
tive and objective recency are strongly coupled”
(p. 352), “longer retention intervals (.1 s), . .
allow . . partial rehearsal to alter subjective
recency” (p. 349). Baddeley and Ecob (1973,
p. 230) say that “Although serial position effects
are frequently absent in the tasks used by
Sternberg, this is probably because there is usually
a delay between presentation and test during
which the subject rehearses the set. Such rehearsal
might be expected to obscure any recency effects
… .” And in their discussion of Monsell’s (1978
data, Nosofsky, Little, Donkin, and Fific (2011,
p. 11) say: “If rehearsal takes place, then the
psychological recency of the individual memory-
set items is unknown because it will vary depending
on each subjects rehearsal strategy.”

These authors seem to believe that with different
probe delays, the same process is invoked, but that
whereas the recency effect—which is diagnostic of
this process—is present regardless of probe delay,
it is hidden in the Sv task, because rehearsal
renders the effective recency unknown. The idea
is that the recency associated with a particular
probe on a particular trial depends on where the
subject happens to be in covert cyclic rehearsal
when the probe appears on that trial: If the probe
happens to be the last item to have been rehearsed
at that moment, it is, effectively, the most recent
item. The absence of an effect of (objective) serial
position then results from the effective recency for
a probe in any serial position being a mixture of
the possible lags 1, 2,… , npos: As in the Monsell
task, the accessibility of the most accessible item

64See, e.g., data in Figure 5B (discussed in Section 8), from the AM condition.
65Monsell (1978) found this for stimulus ensembles containing consonants (Exp. 1) and two-syllable words (Exp. 2), using instruc-

tions that asked subjects not to rehearse.McElree and Dosher (1989) found it for two-syllable words, in both their pilot experiment and
their Exp. 2, with no instructions about rehearsal. For reasons that are unclear, this was not found in the Monsell task of Exp. Nosof11,
with a stimulus ensemble containing consonants, also discussed by Donkin and Nosofsky (2012, Figure 2): An effect of npos on the RT
for the most recently presented probe (lag 1) is shown by all four subjects in that experiment, with a mean of about 15 ms/item, and all
four subjects show large effects of recency. However, there is a clear difference between these data and their data using the Sv task with
digits (Exp. Donk12, 2012, Figure 5), in which two of their three subjects show a substantial effect of npos on the RT for lag 1, and no
subject shows much effect of recency.
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is almost independent of npos—we just do not know
on any particular trial which of the items this is.

An alternative explanation for the effect of
lengthening the probe delay, suggested by
Monsell (1978, p. 496), and mentioned in
Section 2.2, is that “The opportunity to rehearse
might give the subject time to establish the list in
short-term memory in a format suitable for
search.”66 Another possibility depends on the idea
that the decline of an item’s activation decelerates,
as suggested by the curvilinearity of the serial-pos-
ition effect in the Monsell task (McElree &
Dosher, 1989, Figures 4, 9; Monsell, 1978,
Figure 3). If so, shortening the probe delay makes
for a greater difference between the item’s acti-
vation level and that of less recent (negative)
items, increasing the speed and accuracy of strength
discrimination, which invites subjects to choose
that strategy rather than scanning.

How might the mixed-recency conjecture be
tested? It is tempting to say that it is falsified
by the observation (Figures 3 and 4) that in
both Sf and Sv tasks, an estimate of the
minimum, min(RT), increases with npos at a
rate (22 ms/item) far greater than the rate for
the most accessible item in the Monsell task
shown in Table 5. However, a rigorous test
would require taking into account the decreasing
proportion of observations in the mixture distri-
bution on which the estimate is based as npos
increases, along with the presence of an

increasing number of long RTs. Unfortunately,
a satisfactory method for doing so has not yet
been developed.

8. RETRIEVAL FROM ACTIVE
VERSUS INACTIVE MEMORY

In contrast to the Sv procedure, the P-set in the Sf
procedure is stored in LTM: Positive sets used on
one day can be recalled on the next. The similarity
of the findings from the two procedures suggests
that in both procedures it is the same memory—
the AM—that is searched: In the Sf procedure
the information in LTM has been activated. This
leads to the question, how is retrieval different if
the information searched is not held in AM? An
initial small experiment that asks this question,
based on the idea that the AM is of limited
capacity, was reported in Sternberg, 1969a (Exp.
Stern69a).67 Some of the results from an improved
version of this experiment, Exp. Knoll69, are
shown in Figure 5.

The data are from 12 subjects who each ran in
four test sessions after two practice sessions. Each
session, on a different day, contained about 200
trials and lasted for about an hour. Although the
four disjoint P-sets of digits, of size 1, 2, 3, and
4, differed across subjects, for each subject they
remained the same for all six sessions. (Subjects
could recall them at the beginning of the second

Table 5. Effect of npos in Monsell task on RT (ms) for most recent item.

npos 1 2 3 4 5 6 Increase/Item

Experiment
McEl89.p 609 604 599 −0.5 ms
McEl89.2 592 596 599 596 1.5 ms
Monsl78.1, Immediate 369 378 388 396 9.1 ms
Monsl78.2, Experimental 449 456 460 458 3.2 ms
Monsl78.2, Control 431 417 426 433 1.6 ms

Note. Values for Monsell (1978) were read from graphs.

66See also Diener (1988, p. 375) who suggests that “In the absence of the delay, the memory set may not be stored in a form that is
amenable to the search that results in the typical set-size effect.”

67Roeber and Kaernbach (2004) attempted to replicate and extend Exp. Stern69a, but their replication failed; this is not surprising,
as they used the novel negatives task.
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session.) At the start of each trial in blocks of 18,
in both AM and LTM conditions, the subject
recited the relevant P-set, in a fixed order. In the
LTM condition, the subject then saw a list of
seven different consonants, different from trial to
trial, presented at a rate of 3 letters/s. The probe
consisted randomly of either a digit, or a signal
to recall the letters in order, each on about half
of the trials. If the former, the subject had to
make a speeded positive or negative response,
depending on its membership in the P-set. The
AM condition was the same, but without presen-
tation of a list of letters; in response to the recall

signal, the subject had to recite the first seven
letters of the alphabet.

As in the earlier experiment (Exp. Stern69a), the
RT functions are both approximately linear, with
the slope in the LTM condition twice that in the
AM condition, and the slopes for positive and nega-
tive responses approximately equal in both con-
ditions. On the P-trials, in neither condition is
there a systematic effect of serial position: The
weighted mean serial-position slopes, weighted by
1, 2, and 3 for npos= 2, 3, and 4, respectively, is
1.5+ 1.4 ms/item for the AM condition, and
0.3+ 2.8 ms/item for the LTM condition.68

Figure 5. Mean data from the 12 subjects in Exp. Knoll69. Panel A: Mean RT as a function of npos for active-memory and inactive-memory
conditions. Means of RTs for P-trials and N-trials are shown by filled circles with+SE indicated, based on between-subject differences (after
removing subject differences in mean and slope); equations for the unbroken lines fitted to them by least squares are 448+ 30.7npos (active
memory), and 502+ 61.0npos (inactive memory). Mean RTs are shown separately for P-trials and N-trials by open circles containing plus
and minus signs, respectively. Panel B: Mean RT on P-trials as a function of serial position for npos= 2, 3, and 4 in conditions of active
and inactive memory, with +SE indicated, based on subject differences after adjusting for means over serial positions

68Mean rates of speeded-response errors on P-trials and N-trials, respectively, were 2.4% and 1.6% (AM) and 3.0% and 4.1%
(LTM). The recall score was the number of correct letters in correct positions. Mean errors per string were 1.8 (recall control) and
1.7, 1.9, 2.0, and 1.9 for npos= 1, 2, 3, and 4, respectively. Lines fitted by least squares to data from P-trials and N-trials, respectively,
are 431+ 25.2npos and 461+ 36.2npos (AM) and 477+ 62.6npos and 528+ 59.4npos (LTM). Corresponding lines fitted to data
excluding npos= 4 are 418+ 32.9npos and 464+ 34.6npos (AM) and 462+ 71.4npos and 513+ 67.9npos (LTM).
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These findings are important in four ways:

8.1 Effect of npos on the activation process

In four studies investigators obtained RT functions
for judging P-set membership under two conditions:
In one, they regarded the P-set as being held in
“primary” memory; in the other, which produced
longer RTs, the P-set was regarded as being held in
“secondary” memory. They applied the subtraction
method to their data, interpreting the difference
between RT functions as the time to change the
status of the list from secondary to primary memory.
Because these differences were relatively constant
across npos values, they argued that the time required
for this change in status did not increase with npos .
This would seem to contradict the findings described
above, in which the difference is a function that
increases monotonically with npos . However, in all
four of these studies, it canbe argued that thedecisions
in the “primary memory” conditions depended on a
process other than that used in Sv and Sf tasks.69

8.2 Consistency with oscillator models of
maintenance and search

In both the previous experiment (Exp. Stern69a)
and this one, the slope of the RT function in the
LTM condition was approximately twice that in
the AM condition: Combining the data from the
16 subjects in the two experiments, the mean
slope ratio70 is 1.99+ 0.15. In the 1960s, the

conjecture to explain the doubling of slope was
that in the LTM condition, the search was preceded
by an activation process that was sequential. But it
was not obvious why these two processes should
occur at the same rate, which would be required
for the slope to double. However, if both processes
are controlled by the same gamma oscillation rate,
as suggested by Vergauwe and Cowan (2014,
2015), then this would explain the doubling.71

8.3 Absence of serial position effects

In previous experiments where flat serial position
functions were obtained, because cyclic rehearsal
during the retention interval might be interrupted at
a random position by the probe, the nominal and
effective serial positions might differ, and there
might be no effect of the nominal position, as dis-
cussed in Section 7. Here, because the sets were well
learned, and recited in order at the start of each trial,
and because, in the LTM condition, the subject had
to retain a new list of letters before discovering that
a digit had to be classified, the nominal and actual
serial positions are more likely to correspond.

8.4 Evidence against strength
discrimination

Based on results from experiments with the
Monsell task, some investigators (e.g., Dosher &
McElree, 1992; Dosher & Sperling, 1998;
McElree & Dosher, 1989; Monsell, 1978) have
argued or implied that not only in their experiments,

69In the Wickens et al. (1981) and Wickens et al. (1985) experiments using words, the novel-negatives task was used (N-probes
were never repeated), so that subjects could base their decisions on memory strength, as in the Monsell task. Also, sets were presented
simultaneously, as in the Ashby task. In the Wickens et al. (1985) experiment using consonants, sets were presented simultaneously,
and subjects were slow, with mean zero-intercepts and slopes of 625 ms and 52 ms/consonant, respectively. In Conway and Engle
(1994), mean slopes based on the two smallest sets (npos= 2,4) were 194 ms/item for words, and 96 ms/item for consonants, far
outside the range of slopes for high-speed scanning. Also, lists were presented simultaneously during the learning phase, as in the
Ashby task. In Zysset and Pollmann’s (1999) similar study, using consonants, slopes (only P-trials reported) for the two smallest
sets (npos= 4,6) in their primary memory condition were 57.2 and 57.3 ms/item. In all four studies, analyses started with median
RTs; as slopes based on medians tend to be smaller than slopes based on means, all these slopes must be considered above the
range for high-speed scanning.

70In Exp. Stern69a, with four subjects, linear functions fitted to the mean data are 336+ 57npos (AM) and 467+ 105npos (LTM);
the mean ratio of slopes in the LTM and AM conditions is 1.98+ 0.22. In the improved experiment, with 12 subjects, mean slopes in
AM and LTM conditions are 32.5+ 2.0 and 62.6+ 4.5 ms/item, respectively, with the mean ratio 2.00+ 0.19. Standard errors are
based on between-subject differences.

71These authors have recently argued for a common rate for several sequential processes in memory and have related this idea to the
LIJ model discussed in Section 3.
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but also in experiments using the Sv task, the effect
on RT of increasing npos results from an increase in
the average lag of probes on P-trials, with a resulting
decrease in memory strength, along with a reduction
in the strength differences between members of
P-sets and N-sets. Consider this argument applied
to performance in the AM and LTM conditions
of the Sf task. An account in terms of memory
strength might also include the idea that the RTs
in the LTM condition are longer because reciting
the P-set was separated from the probe by presen-
tation of the letter list, which would increase the
lag, hence decrease the memory-strength difference
between P-probes and N-probes.

Some evidence against the importance of lag is of
course provided by the flatness of the serial-position
curves. The greater steepness of the RT function in
the LTM condition provides stronger evidence. Let
tlag be the separation in time units between the pres-
entation, rehearsal, or pronunciation of an item and
the probe of that item. Consider the average tlag of
items in P-sets of different size in the two conditions.
If the reciting rate were 2 digits/s, then, in both con-
ditions, when the probe is presented, the average tlag
difference of items when npos= 1 and 3 would be
0.5 s. Assuming 2 s in the AM condition between
the end of reciting and the probe, and 5 s in the
LTM condition, the tlag of digits in these npos
values in the AM condition would be 2.0 and 2.5 s,
and in the LTM condition would be 5.0 and 5.5 s.

Data from the Monsell task indicate that as tlag
increases, recognition RT increases, but at a declin-
ing rate (McElree & Dosher, 1989; Monsell,
1978). Thus, effects of npos on RT should be
smaller in the LTM condition. It follows that
whereas an account in terms of memory strength
leads us to expect the RT to be longer in the

LTM condition, as observed, it also leads us to
expect that the effect of npos on the RT for “yes”
responses in that condition (the slope of the RT
function) should be smaller than in the AM con-
dition. Yet the slope is about twice as great.72

9. ABSENCE OF AN EFFECT ON RT
OF NEGATIVE PROBE RECENCY

One feature of data from the Monsell task, carefully
explored by Monsell (1978) because it enables dis-
crimination among alternative theories, is the N-
probe recency effect: Presumably, presentation of
an item increases its strength in memory, which
then gradually declines. To the extent that memory
strength is used to decide about membership in the
P-set, N-probes that were displayed more recently
should therefore be harder to reject. As described
in Section 2.2, this effect has been reported by
Monsell (1978) and McElree and Dosher (1989),
using the Monsell task, and by Gaffan (1977) with
pictures, but not with words, using the Sv task.

In two experiments using the Sf task, nneg was
varied with npos= 1 (Exp. Stern75b; nneg= 1, 2,
4, and 8; Nsub= 8) and npos= 2 (Exp. Stern75a;
nneg= 2, 4, and 6; Nsub= 6). In both experiments,
positive and negative responses were required with
equal frequency, and the nneg N-probes were pre-
sented with approximately equal frequency.73 The
data shown in Table 6 omit the conditions in
which npos= nneg; under these conditions, even if
the same strategy were used as in the other con-
ditions, there is no reason why the subject might
not determine, even from trial to trial, which is
the effective P-set.74 For a probe, Δtrials is the
inverse of its recency: the number of trials since it

72In the Monsell task, a brief filled delay was found to reduce !b from 42.2 to 30.5 ms/item (Exp. Monsl78.1). According to
Monsell (1978, p. 481), for direct-access memory-strength models, “if decay [of strength] decelerates… then the effective rate of
decay, and hence the slope, will be smaller after a delay.” Could such a dramatic difference—from reducing the slope in his experiment
to doubling it in this one—be produced by plausible adjustments of strength criteria in such models? It seems unlikely.

73In each of the four parts of Exp. Stern75b, 100 test trials were preceded by 40 practice trials. The mean error rate was 2.4%. In
each of the three parts of Exp. Stern75a, 120 test trials were preceded by 48 practice trials. The mean error rate was 2.9%. In both
experiments, different P-sets were used in different parts.

74Evidence favouring this possibility is provided by RT neg-RT pos, usually between 20 and 40 ms when P-trials and N-trials are
equiprobable, which was 2, 32, 28, and 36 ms for nneg= 1, 2, 4, and 8, respectively, in Exp. Stern75b, and 12, 36, and 32 ms for
nneg= 2, 4, and 6, respectively, in Exp. Stern75a.
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was last presented. As can be seen, the mean Δtrials
for N-probes increased markedly with an increase
in nneg, especially in Exp. Stern75b, where the
increase was by a factor of 4. And the proportion
of trials for which Δtrials was 1 (an immediate rep-
etition) declined from about a quarter of the trials to
none, in that experiment.

These experiments show that in the Sf task,
changes in probe recency per se have at most neg-
ligible effects on RT. In Exp. Stern75b, the mean
increase in RT neg per mean unit of Δtrials was
−0.2+ 1.0 ms, and per N-set item it was
−0.3+ 2.0 ms. In Exp. Stern75a, these values
were −0.9+ 2.3 ms and −1.5+ 3.8 ms, respect-
ively.75 This conclusion is supported by Hawkins
and Hosking (1969) and Biederman and Stacy
(1974), who found effects of relative frequency
among P-probes that were negligible among
N-probes. On the other hand, if we wish to attri-
bute the difference between experiments in RTs
for P-probes to their difference in recency, the
data require a vastly greater effect of recency: The
difference in the mean Δtrials for P-probes from
2 to 4 trials across experiments indicates an increase
in RT pos per mean trial of 25.1+ 11.7 ms. In
Appendix D, further evidence about recency and
frequency effects in the Sf task is described, along
with a description of variants of the Sf task in
which such effects are prominent.

9.1. The Sf task as association or category
learning

Should the Sf task be regarded as learning a set of
associations between items and responses (as pro-
posed by Theios et al., 1973) or as practice in cate-
gorizing items as “positive” or “negative” (e.g.,
Nosofsky & Alfonso-Reese, 1999; Nosofsky &
Palmeri, 1997)? The asymmetry between effects
of npos and nneg suggests not. As nneg is increased,
with positive and negative trials equally frequent,
the subject has fewer opportunities to learn and
practise assigning a category to each item in the
N-set, or to strengthen its association with a
response. Yet increasing nneg does not cause
RT neg to increase, as shown above. Also, with
ensemble size and Pr{pos} fixed, an increase in
npos is associated with a decrease in nneg, and
thus, for each N-set (P-set) member, more
(fewer) opportunities to practise responding:
Despite this, βpos is not systematically greater
than βneg. (See, e.g., Figure 4.) Instead, this asym-
metry of the effects of npos and nneg makes it plaus-
ible that negative responses are made “by default”,
when the probe fails to match any member of the
P-set, a conclusion also supported by the finding
of effects of relative frequency differences among
P-probes but not among N-probes mentioned
above (see Appendix D).

Table 6. Effects of probe recency on mean RT.

Probe Type Experiment Stern75b (npos= 1) Stern75a (npos= 2)

nneg 2 4 8 4 6

Negative Mean Δtrials 3.9 7.9 16.3 8.3 11.7
Pr{Δtrials= 1} 0.23 0.05 0.00 0.07 0.05
Mean RT (ms) 449.7 434.5 444.8 494.7 491.8

Positive Mean Δtrials 2.0 2.0 2.0 3.9 4.0
Pr{Δtrials= 1} 0.43 0.43 0.40 0.33 0.33
Mean RT (ms) 417.6 406.8 408.9 459.0 460.2

75The absence of an effect of nneg was described in Sternberg (1963) and mentioned in Sternberg (1966); the data are shown in
Figure 3 in Sternberg (1975). This finding appears not to have been considered by advocates of strength-based theories of performance
in this task (e.g., Monsell, 1978 and McElree & Dosher, 1989, who believe that recency across trials is one determinant of RT, and
Hockley & Murdock, 1987). Nor have these findings been considered by those who argue that repetition priming plays a role in the
fixed-set procedure (Jou, 2014; Stadler & Logan, 1989).
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10. VARIATION OF RELATIVE
RESPONSE FREQUENCIES AND
EVIDENCE-ACCUMULATION
MODELS

Can data from Sv or Sf tasks be explained by evi-
dence-accumulation models such as the diffusion
model (Ratcliff, 1978), or the linear ballistic accu-
mulator (LBA) model (Brown & Heathcote,
2008)? Van Vugt, Beulen, and Taatgen (2016)
pointed out that the bulk of the neurophysiological
studies in monkeys and humans that favour such
models involve perceptual decision making
(Heekeren, Marrett, & Ungerleider, 2008), and,
using intracranial recordings in humans, they
were unable to find corresponding neural support
for such models applied to the Sv task.
Nonetheless, it seems worth asking whether behav-
ioural data from the Sf or Sv task might be consist-
ent with such models. In the LBA model, the
major parameters are the amount of evidence ej
required for a decision, and the rate, rk at which it
accumulates. In this connection it is interesting to
consider how the effects of relative response fre-
quency (Pr{pos}:Pr{neg}) and size of the P-set
(npos) combine.

In the two cases in which the diffusion model
has been fitted to data from Sf or Sv tasks, an
increase in npos was interpreted mainly as a
reduction in the “relatedness” or “resonance” of
matches, and hence a reduction in rk (“drift rate”),
at least for positive responses.76 In contrast, for
both LBA and diffusion models, the response
bias induced by differential response proportions
has been represented by the amount of evidence

required: For a less frequent response, the evidence
threshold, or the starting point for evidence
accumulation, or both (hence, ej), are suitably
adjusted. (Donkin, Brown, & Heathcote, 2011;
Forstmann, Brown, Dutilh, Neumann, &
Wagenmakers, 2010; Leite & Ratcliff, 2011;
Mulder, Wagenmakers, Ratcliff, Boekel, &
Forstmann, 2012; Ratcliff & McKoon, 2008,
Exp. 377). In none of these applications was the
effect of differential response proportions attribu-
ted to a post-decision process (“translation &
response organization”), as in the model
described in Sternberg (1969b, Figure 6), based
on the additivity of this effect with npos and
with response type (Sternberg, 1969b, Figures
4D and 4E).

Let us idealize these findings, and assume that
npos influences only the rate of evidence accumu-
lation rk, and that Pr{response} influences only the
amount of evidence required for a response, ej.
We are then led to two predictions for an exper-
iment in which Pr{pos} and npos are varied facto-
rially. Specifically, as Pr{pos} increases, so that less
evidence is required on P-trials and more on
N-trials,

Prediction 1: RT pos will shrink andRT neg will grow;
hence their difference, RT neg−RT pos, will
grow.

Prediction 2: The effect of slowing the rate of evi-
dence accumulation (by increasing npos) on
RT pos will shrink, while its effect on RT neg

will grow. That is, βpos will shrink, while βneg
will grow, and hence their difference,
βneg−βpos will grow.

76In a review of the diffusionmodel, Ratcliff andMcKoon (2008, p. 876) say “For recognitionmemory, for example, drift rate would rep-
resent the quality of thematch between a test word andmemory.” In his analysis ofExp.Hock84 (anSv taskwith letters), Ratcliff (1988) found
that the primary effect of the increase innpos from3 to 6was a systematic reduction in rk formatches (from .405 to .294), and a smaller reduction
in rk for non-matches.Also, the separation between the starting point and the “yes”boundary (hence, ej) increased slightly but systematically. In
their “VMblocked” condition in their Sf taskwithwords, Strayer andKramer (1994,Exp. 2) found that the primary effect of the increase innpos
from2 to 6was a reduction in rk formatches from .362 to .267, and a negligible effect on rk for non-matches. They also found an increase in the
separation between starting point andmatch boundary from .037 to .063. Ratcliff’s (1978) earlierfindingswere similar, but because he used the
Monsell task rather than the Sv task, they are not relevant. In contrast to thesefindings,Donkin andNosofsky (2012) found, infitting a version
of theparallel self-terminatingLBAmodel to their data fromthree subjects in anSv task (Exp.Donk12), thatnpos influenced the ej aswell as the
rk.

77Applying the diffusion model to an experiment in which the relative proportion of two responses was varied, Ratcliff and
McKoon (2008, p. 899) concluded that “[a] difference in starting point accounted for most of the proportion effect” and that
fitting an effect of proportion on the drift rate as well “increased the chi square goodness of fit value by only 1%”.

2052 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2016, 69 (10)

STERNBERG



In an experiment (Exp. Stern69b.4) to examine
the question of how the effects of npos and
Pr{pos} combine, three groups of 12 subjects
each were run in the Sf task with digits, each
subject with npos values of 1, 2, and 4, and
each group with a different relative frequency
of positive and negative responses: .25/.75,
.50/.50, and .75/.25. For each subject and each

of the three npos values, 40 practice trials were
followed by 100 test trials, in blocks of 20.78

The stimulus ensemble consisted of the ten
digits; the N-set was the complement of the
P-set. Accuracy was high in all conditions; the
mean error rate was 1.4%.79 Mean RTs are
plotted in Figure 6; summary data are shown
in Table 7.

Figure 6. Mean RTs from an experiment in which Pr{pos} (between subjects) and npos (within subjects) were varied. Broken lines are least-
squares fits to the functions relating RT neg (Panel A) and RT pos (Panel B) to npos for the three groups of 12 subjects. Equations of the fitted lines
for N-trials (Panel A) are 437+ 30.1npos , 408+ 35.8npos , and 380+ 33.7npos , for Pr{neg}= 0.25, 0.50, and 0.75, respectively. Equations
of the fitted lines for P-trials (Panel B) are 342 + 32.2npos , 358 + 36.0npos , and 402 + 27.2npos , for Pr{pos} = 0.25, 0.50, and 0.75,
respectively. The six unbroken lines have equal fitted slopes (32.5 ms/item) and individually fitted intercepts. Standard errors are based on
residuals in ANOVAs.

78In retrospect, a full practice session should have been provided, to reduce variability. Because of the importance of knowing how
the effects of these two factors combine, a better experiment, perhaps with both factors varied within subjects and with more than three
values of npos , should be run.

79Mean error rates were similar for P-trials and N-trials and differed little across npos values: 1.3%, 1.5%, and 1.4% for values 1, 2,
and 4, respectively. However, they did vary with response probability: For low. medium, and high probabilities, mean error rates were
2.4%, 1.2%, and 0.6%, respectively—not surprisingly, subjects tended to make the high-probability response when the low-probability
response was called for, more than the reverse. Means of var(RT) differed little between P-trials and N-trials: 7,021 and 6,995 ms2,
respectively. Also, they were influenced little by response probability: 6,907, 6,903, and 7,214 ms2 for low-, medium-, and high-
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Given the predictions above, these data invite
several comparisons: First, consider the effects on
RT , in the top part of Table 7. As expected,
increasing the proportion of trials that call for a
response causes the RT for that response to
shrink. The effects, which are almost identical for
P-trials and N-trials, are substantial, showing that
subjects are sensitive to the Pr{pos} manipulation.80

Next, consider whether and how response prob-
ability modulates the effects of npos , as shown by
βpos and βneg in the bottom part of the table. As
Pr{pos} is increased from 0.25 to 0.75, !bpos does
not shrink, as predicted; the increase, by 5.0 ms/
item, is not statistically significant, but rules out a
large decrease. Similarly, as Pr{neg} decreases
from 0.75 to 0.25, !bneg does not grow, as predicted;
the decrease, by 3.6 ms/item, is not statistically
significant, but rules out a large increase. Finally,
consider the within-subject difference between
βneg and βpos . As Pr{pos} increases from .25 to
.75, this difference does not grow, as predicted;
the decrease, by 8.6 ms/item, is not statistically sig-
nificant, but rules out a large increase.

What slope differences would we expect from
an evidence-accumulation model? Consider this
question first for !bpos, in relation to a model in
the spirit of the LBA, in which evidence grows
linearly (faster for smaller npos), until it reaches a
threshold (lower for higher-probability responses).
Ignore the data for intermediate conditions
Pr{pos}/Pr{neg}= .50/.50 and npos= 2. Writing
RT =RT (Pr{pos}, npos), the relevant means are
RT (.75, 1)= 366.7 ms, RT (.75, 4)= 467.4 ms,
RT (.25, 1)= 431.1 ms, andRT (.25, 4)= 511.8 ms.

Given mean effects of npos and Pr{pos} on RT ,
together with the mean duration !t of the decision
process, it can be shown that the predicted effect

on βpos of the change of conditions from .25/.75
to .75/.25 is:

Dbpos =
!b× !p

!t
, (4)

where !p is the mean effect of probability on RT pos,
between .75 and .25 (54.4 ms), !b is the mean of
the slopes of the RT functions on P-trials
(30.2 ms/item), and !t is the mean duration of
the decision process averaged over the four
conditions.81

To determine !t, we need to know how much of
RT is consumed by stimulus-encoding and
response-output stages. In the diffusion model,
the sum of their durations is the value of Ter.
(The smaller Ter , hence the larger !t, the smaller
the predicted slope difference.) In their review of
23 applications of the diffusion model, Matzke
and Wagenmakers (2009) found the smallest esti-
mate of Ter to be 206 ms. In his analysis of
Hockley’s (1984) Sv data, Ratcliff (1988) obtained
mean Ter= 343 ms. Let us use Ter= 206 ms, the
conservative choice. Averaging over npos values of
1 and 4, RT = 444.2 ms. Thus, !t= 444− 206=
238 ms. Using Equation (4) we find the predicted
value of β.75 – β.25 to be −6.9 ms/item, different
from the value observed for these reduced data, of
+5.0 ms/item.

Given the design of this experiment, the effect of
Pr{pos} in the above analysis is a between-subjects
effect, so that the precision of the difference
between the predicted and observed values is low.
An alternative is available if we note that the
observed equality of the effects of Pr{response} and
npos on P-trials and N-trials suggests that the same
mechanism is at work on the two kinds of trial:

probability responses, respectively. However, they were influenced by npos , similarly for P-trials and N-trials: 5,607, 6,587, and
8,830 ms2, for npos values of 1, 2, and 4, respectively.

80As discussed in Sternberg (1969b), another way of expressing the equality of these effects on P-trials and N-trials is that the
effects of response probability and response type (positive or negative) are additive, consistent with their selectively influencing distinct
processes arranged in stages.

81To show this, let τ= duration of the decision process, γ= half of the mean effect of npos (from 1 to 4) on τ, π= half of the mean
effect of Pr{response} (from .75 to .25) on τ, and !t= the mean of τ over the four conditions, and write τ as τ(Pr{response}, npos). Then τ

(.75, 1)= (!t− γ)(!t− π)/!t; τ(.75, 4)= (!t+ γ) (!t− π)/!t; τ(.25, 1)= (!t− γ) (!t+ π)/!t; and τ(.25 , 4)= (!t+ γ)(!t+ π)/!t. Next, combine
these to determine the effects of npos on τ (in this case, three times the slope of the RT function) under the two conditions of response
probability: τ(.75, 4 ) − τ(.75, 1) and τ(.25, 4) − τ(.25, 1).

2054 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2016, 69 (10)

STERNBERG



That is, for both responses, the probability effect is
due to a difference in the response threshold, and
the npos effect is due to a difference in the rate of evi-
dence accumulation. Assuming that this is true, we
can derive within-subject estimates of both the pre-
dicted and the observed values. Using Equation (4),
and letting β.25 and β.75 be the slopes of the RT
functions for response probabilities of .25 and .75,
respectively, averaged over P-trials and N-trials,
note first that the predicted effect of the change of
conditions from .25/.75 to .75/.25 on the quantity
in the last row of Table 7 is

D[bneg − bpos] = 2(b
.25 − b

.75) =
2!b×!p

!t
. (5)

Now, writing RT =RT (Pr{response}, npos), and
averaging over RTs for P-trials and N-trials for cor-
responding (equal) response probabilities, we have
RT (.75,1)= 391.1 ms, RT (.75,4)= 491.5 ms,
RT (.25,1)= 447.9 ms, andRT (.25,4)= 534.0 ms.

To estimate the sampling error of the difference
between observed and predicted values of 2(β.25 −
β.75), without having to adjust for the effect of
response type (positive or negative), I created 12

pseudo-subjects by averaging the RTs for
Pr{response}= .25 from each of the 12 subjects
who provided .25/.75 data with the RTs for each
of the corresponding subjects who provided .75/
.25 data, and did the same for the Pr{response}= .75
data for the two groups.82 I assumed that Ter=

206 ms for each pseudo-subject, which could then
provide both an observed value and a prediction.
The mean observed value is −9.5 ms/item, the
mean predicted value is +11.9 ms/item, and the
difference between them is 21.4+ 5.2 ms/item; a
t test of this difference (with df = 11 ) gives
p= .002. If we assume that Ter= 0, so that the
decision process occupies the full RT (a highly con-
servative assumption), the result is a lower bound
for the mean predicted value of 6.6 ms/item, and
a difference between predicted and observed
values of 16.2+ 5.1 ms/item; in this case the
t test gives p, .01, which is still statistically
significant.

It is possible that the goodness of fit of the evi-
dence-accumulation model to these data is influ-
enced adversely by anomalous values when npos=
1 (see below). For this reason, I repeated the
above analysis using the data for npos= 2 and 4.

Table 7. Results of Exp. Stern69b.4, in which Pr{pos} and npos were varied factorially.

Condition

Pr{pos}/Pr{neg}

Effect.25/.75 .50/.50 .75/.25

Measure
RT pos 465+ 13 442+ 11 417+ 13 −48+ 18 (p= .02)
RT neg 458+ 10 491+ 14 507+ 17 +49+ 20 (p= .02)
RT neg−RT pos −7.0+6.6 49.7+7.0 89.6+7.3 +97+ 10 (p, .001)

!bpos 27.2+ 3.0 36.0+ 4.9 32.2+ 4.5 +5.0+ 5.4 qpred
!bneg 33.8+ 3.2 35.8+ 3.0 30.1+ 5.4 −3.6+ 6.1
!bneg −

!bpos 6.5+ 2.3 −0.2+ 3.1 −2.1+ 4.3 −8.6+ 5.3 qpred

Note. Measures are mean+ SE. An “effect” on a measure is its value for .75/.25 minus its value for .25/.75. The p values are based on
the Welch two-sample t test. Values in the third and sixth rows are means of within-subject differences. The values for which
quantitative predictions are derived from the evidence-accumulation model are marked “qpred”.

82Because the two groups are independent, the assignment to create the pairs is arbitrary, but the result might depend on the assign-
ment. For this reason I created 1000 random assignments and determined, for each, the observed value, the predicted value, and the differ-
ence between them. The values reported are the means of the thousand differences determined in this way. It turns out that the results
were not especially sensitive to the assignment: While the mean difference between predicted and obtained values was 21.4 ms, the range
of this difference was small (20.7, 22.1 ms).
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In this analysis the mean observed value is
−3.2 ms/item, the mean predicted value is
9.4 ms/item, and the difference between them is
12.6+ 5.6 ms/item; a t test of this difference
gives p= .05.

In conclusion, while subjects are sensitive to
both npos and Pr{pos}, there is no support for the
magnitude of the interaction of these two factors
that we expect from this evidence-accumulation
model and plausible interpretations of its par-
ameters. Instead, the effects of the two factors are
approximately additive, consistent with the idea
that they influence distinct processing stages, poss-
ibly one for “memory scanning”, sensitive to npos
but not to Pr{pos}, and one or more for decision
and response-organization sensitive to the latter
but not the former. However, more precise data
are needed for a persuasive test of additivity: The
interaction contrast of Pr{pos} and npos is 14.3+
7.4 (based on npos= 1 and 4) and 3.2+ 6.2
(based on npos= 2 and 4). Neither is significant,
but the first, at least, is uncomfortably large.

Impossibility of selective influence. Suppose we
are confident of the additivity of the effects of
two factors Fj and Gk on RT , each factor at
two levels ( j= 1, 2; k= 1, 2). Consider an evi-
dence-accumulation model with two parameters:
ej. 0, the amount of evidence required, and
rk. 0, the rate of evidence accumulation. Then
it is easy to show that neither factor can selec-
tively influence just one of the parameters: In
such a model, RTjk=RT0+ ej /rk. Assuming
non-zero effects (e2 ≠ e1 and r2 ≠ r1), the additiv-
ity implies that (e2− e1)/r1= (e2− e1)/r2, which
requires r2= r1, a contradiction. For effects of
factors on RT to be additive in such a model,
any factor that influences one of the parameters
must influence both.

Atkinson and Juola’s (1974) hybrid model
(Section 2.1) leads us to expect the same kind of
interaction of the effects of npos and Pr{pos}, as
follows: As Pr{pos} increases, we expect the famili-
arity criteria to be adjusted so that scanning occurs
on a smaller proportion of P-trials and a larger pro-
portion of N-trials. The result of these changes in
the mixture distributions would be an increase
in !bneg−

!bpos, which is not what is observed.

10.1. The set-size one anomaly

Data from both Sv and Sf procedures occasionally
show a deviation from a linear RT function in
which the RT for P-trials with npos= 1 falls
below a fitted linear function (responses faster
than they “should be”). One example is in the Sv
data of Exp. Stern66.1 (Figure 3B). Why was this
deviation absent from the Sf data of Exp.
Stern66.2? In that experiment, Pr{pos} was low
(0.27), which provides a clue. Results from the
experiment described above provide a possible
answer, showing that the deviation is sensitive to
relative response frequency. To examine the devi-
ation, I extrapolated linear functions fitted to the
data for npos= 2 and 4 to npos= 1 for each of the
12 subjects in each response-frequency group, sep-
arately for P-trials and N-trials, and determined the
deviation by subtracting the extrapolated value
from the corresponding observed value for each
subject. For data containing the anomaly, the devi-
ation should be negative.

For responses on N-trials, there was no effect of
response frequency: For the .25/.75, .50/.50, and
.75/.25 groups, the numbers of subjects out of 12
who showed negative deviations were 6, 5, and 6,
respectively. However, for responses on P-trials,
the corresponding numbers were 4, 10, and 9,
and the differences between the mean deviations
for the .25/.75 and .75/.25 groups, 7.3 and
−28.0 ms, were large enough, despite considerable
variability, so that a t test produced p, .05.

A possible explanation for the anomaly is that
when a particular probe occurs on half or more of
the trials, the benefits of preparing selectively for
that probe outweigh the costs, so that subjects
tend to prepare in that way. The present exper-
iment was perhaps too insensitive to reveal any
possible costs on N-trials.

11. SEQUENTIAL COMPARISON
VERSUS SEQUENTIAL ACTIVATION

In this section I ask whether the effect of npos onRT
in the Sv and Sf tasks results from a process of
sequential activation of members of the P-set,
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rather than sequential comparison of thosemembers
to the probe, as originally proposed (Sternberg,
1963, 1966), a possibility also discussed by
Corballis (1979) and Corballis and Miller (1973).

Consider the LIJ model (Section 3), which
describes a continuous process of activation and
reactivation of the P-set. Although the sequence
of operations driven by the gamma oscillation is
said to include comparison of a representation of
the probe to a representation of each member of
the P-set, when needed, no details are provided
about how the comparisons are carried out. For
example, it is not clear whether or how the simi-
larity of an N-probe to one or more members of
the P-set could have an effect on RT. If the effect
of npos on RT is due to its effect on the duration
of an activation cycle, then comparisons of a
probe to P-set members must occur either (a) at
the same time as each member is activated, or (b),
after the cycle is completed, simultaneously. If (a),
the doubling of the slope of the RT function
described in Section 8 when retrieval from active
and inactive memory are compared then becomes
even more mysterious: Why should an activation
process have to occur twice? However, if (b), so
that the effect of npos on RT reflects just an acti-
vation process, and the comparison process occurs
afterwards, then we have an alternative explanation
for βpos≈ βneg, the property used to argue that a
hypothesized comparison process is exhaustive,
hence seemingly inefficient.83

Whereas the time per item associated with an
activation process can be influenced by the kind
of items comprising the P-set, it should not be
influenced by the number of its members to
which a N-probe is similar. On the other hand, if
a comparison process is sequential, and the dur-
ation of the comparison of the N-probe to a
member of the P-set is increased when they are
similar, the LIJ model would seem to require
serious modification, because, as it stands, the rate

of the serial process in that model reflects the com-
plexity of items in the P-set, and not the relation of
the probe to those items.

Suppose a process of sequential comparison: If
we recognize that each comparison is a stage, and
call two of these stages A and B, with durations
ta and tb, then we can apply the additive factor
method (Sternberg, 1969b, 1998, 2001) by
varying N-probe similarity so as to increase the dif-
ficulty of neither, or of A, or of B, or of both, and
consider the structure of the four mean RTs that
result. Additivity of the effects on ta and tb would
favour the hypothesis that the process includes
sequential comparison, not merely sequential acti-
vation.84 Furthermore, if npos is varied, with
npos. 2, the additivity of effects of similarity on
ta and tb should still obtain, and, in addition,
these effects should also be additive with the
effect of npos. 2. And if we vary the number of
set members nsim≤ npos to which the N-probe is
similar in the same way, then we should find that
for a given npos , RT should increase linearly
with nsim.

An experiment to perform such tests must
satisfy at least four requirements:

1. The task should be Sf or Sv.
2. The structure of theP-sets should be independent

of the similarity manipulation. For example, the
sets in which two members are similar to the
probe should not have members that are more
similar to each other than sets in which one or
no members are similar to the probe.

3. At least two different P-set sizes (and preferably
three) should be used, to permit determining
whether the RT pos and RT neg functions for
fixed nsim are parallel, and whether the magni-
tude of the effect of npos on RT also is consist-
ent with the “standard” phenomenon for the
stimulus ensemble being used. (With three P-

83The puzzling “translation effect”, investigated thoughtfully by Clifton and his associates (e.g., Clifton, Sorce, & Cruse, 1977; see
Sternberg 1975, Section 7.1) would perhaps be less mysterious if it reflects activation of both the P-set and its translations, rather than
comparison to both.

84If the process is indeed exhaustive, and we consider time to respond to P-probes as the similarity of the probe to two non-match-
ing set members is varied in the same way as described for N-probes, then a similar data pattern, with effects of the same size, would be
expected.
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set sizes, linearity of the RT function can also be
assessed.)

4. The overallRT and error rate should be consist-
ent with the “standard” phenomenon for the
types of item being used.

Although not a requirement, an additional desirable
property is:

5. The number of items in the P-set, nsim≤ npos ,
to which the probe is similar in the same way
(e.g., with respect to the same dimension)
should be varied over three levels (possible
with npos≥ 2), to test linearity (additivity) of
the effects on RT .85

These requirements are not difficult to achieve.
Suppose items that can be characterized by their
values, j= 1, 2,… and k= 1, 2,… , on two
dimensions, d1 and d2, so that an item can be
described as ( j,k). Let two items of the P-set be
(1,1) and (2,2). Then, among possible N-probes,
(3,3) shares no values with set members, which
we can symbolize by [0,0]; (1,3) and (2,3) each
share a d1 value with (are similar to) one set
member, symbolized [1,0]; (3,1) and (3,2) each
share a d2 value with one set member, symbolized
[0,1]; while (1,2) and (2,1) each share a value with

(are similar to) two set members, symbolized [1,1].
The set can be increased in size by adding [0,0]
items such as (4,4) and (5,5). Now, consider the
interaction contrast Ix= (RT [1,1] − RT [0,1]) −

(RT [1,0] − RT [0,0]). Townsend and Fific (2004)
recognize the importance of this interaction con-
trast; they point out that we expect the two
kinds of similarity to be additive (Ix= 0) if com-
parisons are sequential, but that if comparisons
occur in parallel we expect Ix, 0 (a “negative
interaction”).86,87,88

Surprisingly, there appears to be only one pub-
lished experiment that uses the Sv or Sf task and
satisfies requirements (1), (2), (3), and (4) above:
the condensation task of Checkosky (1971).89 In
Checkosky’s experiment, the items were coloured
geometric forms with two dimensions: colour and
shape, such as red circle and blue square. The exper-
iment satisfied requirements (2), (3), and (4) above,
but not property (5). Averaging over the two test
days, and over levels of probe-set similarity for nega-
tive responses, the slopes of the RT functions for
positive and negative responses were 29 and 32 ms,
respectively, close to parallel, and within the range
of values often found in Sv and Sf tasks. However,
the function relating RT for negative responses to
the number of items with a feature that matched

85The prediction of additivity could fail if the similarity of a probe to a member of the set along a particular dimension changes the
way in which that dimension is processed in subsequent comparisons.

86Note that Ix= 0 if and only if the effect of the mean number of shared features is linear, because it is equivalent to RT [1,1] −

(RT [1,0] +RT [0,1])/2= (RT [1,0] +RT [0,1])/2 − RT [0,0].
87Townsend and Fific (2004) also show that with a negative interaction (Ix, 0), a more elaborate analysis based on the RT dis-

tributions can distinguish among alternative parallel processes.
88To test whether RT is linear with the number of set members to which an N-probe is similar in the same way (i.e., with respect to

the same dimension), at least two members of the P-set must have the same value on one of the dimensions, and for both dimensions to
be relevant to the decision there should be additional members. An example of such a P-set is (1,1), (1,2), (3,3), (4,4). Then the N-
probes (5,5), (3,5), and (1,5), symbolized [0,0], [1,0], and [2,0], are similar with respect to the same dimension to 0, 1, and 2 members,
respectively.

89The interesting Sv experiment by Townsend and Fific (2004), which used an ensemble of Serbian pseudowords with Serbian
subjects and showed strong effects of similarity, satisfies neither requirement (2) nor (3). However, it was revealed by Yang, Fific,
and Townsend (2014) that their experiment also included a condition with npos= 4, so that requirement (3) could be satisfied,
given an adequate analysis. However, assuming these violations to be unimportant, the analysis shows that whether the comparison
process is serial or parallel varies from subject to subject (one consistently serial, one consistently parallel) and the probe delay (the
remaining three subjects serial with a delay of 0.7 s, parallel with a delay of 2 s). The experiment by Huesmann and Woocher
(1976) used the novel-negatives task, in which N-probe words were presented only once during the experiment, which invites the
use of strength discrimination. Chase and Calfee’s (1969) experiments did not satisfy requirement (2). Dick and Hochhaus’s
(1975) subjects were extremely slow and inaccurate. Also, the attempt by Hockley and Corballis (1982, Exp. 2) satisfied neither
requirement (1) (using a variant of the Sf task with an R–S interval of only 0.5 s) nor (2).
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one of the probe’s features, though roughly additive
with npos , was distinctly non-linear, indicating a sub-
stantial positive interaction.90

A possibility consistent with Checkosky’s
(1971) conclusions is that rather than engaging
in a sequence of comparisons of the probe with
representations of whole items in the P-set, sub-
jects search separately for the presence, among
the features in the P-set, of each of the two fea-
tures of the probe; only when both features (one
on each of the two dimensions) are discovered to
be present would the subject have to proceed
further, to determine whether they are associated
with the same item. Such a strategy might have
been encouraged by the use of dimensions that
were highly separable (Garner & Felfoldy,
1970), and by the subjects serving in a mixture
of two tasks: the condensation task and
another task that invited searching for single
features.91

Thus, an adequate experiment has yet to be
performed that uses variation in perceptual simi-
larity to manipulate the time taken to reject an N-
probe in an Sv or Sf task. Another approach
would be to use variation in categorical similarity,
as was done by Darley (1973; described by
Atkinson et al., 1974, pp. 226–231), for a

different purpose. Darley’s was a factorial exper-
iment with P-sets containing digits and letters,
in which one factor was the number of letters
(1, 2, or 3) in the P-set, the other was the
number of digits (1, 2, or 3) in the P-set, and
the probe could be a digit or a letter.92 The avail-
able data93 are RT means over subjects, P-trials
and N-trials, and letters and digits. Let npos=
ns+ nd, where ns is the number of P-set
members in the same category as the probe, and
nd is the number in the other category. The
effects of ns and nd on RT were both linear; the
mean data are well described by RT = α+

βsns+ βdnd. If the process is sequential compari-
son, and it takes longer to decide on a mismatch
if probe and P-set member are in the same cat-
egory, then we would expect βs. βd. The esti-
mates are b̂s = 37.0 and b̂d = 33.1; the
difference, b̂s − b̂d = 3.9+ 5.0 ms/item, is con-
sistent with serial comparison, but too small rela-
tive to variability to be conclusive. The adjusted
R2 for a model in which βs= βd is 0.963, to be
compared with the adjusted R2 of 0.961 for a
model in which βs and βd are not constrained to
be equal, again indicating that while suggestive,
these data provide no persuasive evidence for
sequential comparison.94

90RT for nsim= 0, 1, and 2 was 510, 534, and 625 ms, respectively; the corresponding error percentages were 0.3%, 2.5%, and
7.8%.

91The ingenious experiments byMewhort and Johns (2000) and Johns andMewhort (2002, 2003) fail to satisfy requirements (2) or
(3). With ensembles of coloured shapes, their subjects are substantially slower than those of Checkosky (1971), who received no feed-
back, perhaps because they received feedback only on accuracy. With ensembles of words, and npos= 4, their subjects may also be
slower and less accurate than others. For example, Juola and Atkinson (1971), with npos= 4 words, obtained RT = 712 ms and
0.3% errors; in their accuracy condition, with npos= 4 words, Banks and Atkinson (1974) obtained RT = 828 ms and 1.3% errors
(averaged over npos values of 2, 3, 4, 5, and 6). In contrast, averaging over Exps. 5 and 6 in Mewhort and Johns (2000), and
Exp. 4 in Johns and Mewhort (2002), all using P-sets containing four words, the RT was 931 ms and the error rate 3.4%.
However, under their conditions, Johns and Mewhort show persuasively that subjects search for probe features in the P-set rather
than comparing the probe as a whole to P-set members, just as Clifton and Gutschera (1971) showed that subjects sometimes
engage in such “hierarchical search” when the stimulus ensemble consists of two-digit numbers and the “features” are the tens digit
and the units digit.

92Also included in his experiment were “pure” P-sets, containing just letters or just digits. On trials with such P-sets, the category of
the probe was the same as that of the P-set, so that subjects knew the category of the probe before it was presented, unlike trials with
mixed P-sets, on which the category of the probe was uncertain. Data from pure trials are thus omitted from the present analysis. Also,
it should be mentioned that Darley’s experiment is best described as an Ashby task, as members of the P-set on each trial were displayed
simultaneously, with the letters and digits in different columns.

93Values read from plot in Atkinson et al., 1974, Figure 21.
94Darley’s data also provide three contrasts to answer the question more directly. Let RTs, d be the mean RT when ns= s and

nd = d. Then, for npos= 3, RT 2, 1 = 602 ms and RT 1,2 = 602 ms; for npos= 4, RT 3, 1 = 638 ms and RT 1,3 = 633 ms; and for
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Thus, an adequate experiment that uses
N-probe similarity to discriminate between sequen-
tial activation and sequential comparison as respon-
sible for the effect of npos on RT has yet to be
performed. It should be noted, however, that
some of the challenges for the LIJ model (footnote
29) are also issues for the sequential activation
account.

12. SOME OPEN QUESTIONS

Much could be gained by improving on some of the
experiments discussed above, providing more prac-
tice, using within-subject comparisons for some
questions, and retaining P-set and probe identities
in the record of each trial. Some issues that seem
especially intriguing are mentioned below.

12.1. Effect of positive set size on mean
RT: comparison or activation?

What is perhaps the most important open question
is described in Section 11, along with one way to
answer it.

12.2. Do Sv and Sf tasks elicit the same
process?

Although I have claimed that the same scanning
process is elicited by the Sv and Sf tasks, based
on similarities of their RT patterns, a within-
subject task comparison is needed, which
would also provide an opportunity to determine
whether the difference in variability suggested
by the values in Table 4 is real. If so, an exper-
iment using the Sv task in which the same P-set
is used in more than one separated group of,
say, five successive trials, sometimes with the
same probe, would permit determining the
extent to which any variance difference is due
to differences among P-sets of the same size,
and the extent to which it is due to interference

from sets presented on the previous one or two
trials.

12.3. Scanning rate, stimulus ensemble, and
mixed sets

Cavanagh’s discovery and its replications have
made it clear that the scanning (or activation) rate
depends systematically on the items in the stimulus
ensemble. Presumably, each “complex” item (such
as a colour name) takes longer to activate or
compare than each “simple” item (such as a digit).
Corresponding to this, and given the LIJ model,
a more complex item is associated with a longer
gamma period. How might we test this idea
further? Consider how long it would take to scan
a mixed list: Scanning time for a P-set of fixed
size should increase by the same increment for
each simple item that is replaced by a complex
one, and, replacing, for example, two simple
items by complex ones in P-sets of different size
should have the same effect. In other words, the
number of complex items should have a linear
effect on RT that is additive with the effect of npos .

The design and analysis of such an experiment
must take into account the possibility of selective
search of just the items in the category of the
probe (e.g., Naus, 1974; Naus et al., 1972). One
way that may avoid this possibility is to order
the items in each P-set so as to avoid either all
the simple items or all the complex items appear-
ing consecutively, and to insure that the subject
maintains the P-set in the order in which it was
presented. Results of the experiment by Darley
(1973), described in Section 11), using “duplex
target sets” that changed from trial to trial are
promising: Even though the sets, consisting of
subsets of letters and digits, were presented with
the subsets separated (visually, so it was a variant
of an Ashby task), subjects did not appear to
search selectively. Clifton and Brewer (1976)
found that even with an Sf task, there are con-
ditions under which search of mixed lists is not
selective.

npos= 5, RT 3,2 = 667 ms and RT 2, 3 = 653 ms. The differences, whose mean implies that βs – βd= 3.2+ 2.0 ms, provide evidence
for sequential comparison that is again suggestive, but not conclusive.
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12.4. Is choice of process obligatory or
optional?

To what extent do the details of a task constrain the
process used by subjects to perform it? For example,
when the choice of response can be based either on
(a) discrimination of the probe’s strength in
memory, or on (b) serial comparison of the probe to
the P-set, can the subject choose which process to
use? Consider the Monsell task: Suppose that the
conjecture by Monsell (1978, p. 496) and Diener
(1988, p. 375) that forming a representation of the
P-set that can be scanned takes more time than is per-
mitted by that task. If so, we might conclude that
strength discrimination is obligatory. One way to
test such a conjecture is to compare task performance
after different kinds of training. One could train
either in the Sv task (experimental group) or the
Monsell or novel negatives task (control group), and
then test using the Monsell task with a high-accuracy
requirement, comparing RT functions, serial-pos-
ition curves, and sizes of the N-probe recency effect.

With respect to the Ashby task, I suggested
(Section 2.4) that a simultaneous visual display of
members of the P-set invites but does not require
the subject to scan a visual image representation,
rather than the kind of representation used in the
Sv task. Again, one could train either in the Sv
task (experimental group) or the Ashby task
(control group), and then test using the Ashby
task, looking for effects on the βneg/βpos ratio, and
on the serial-position curves.

A similar question can be asked about the
Atkinson and Juola (1974) hybrid model (Section
2.1), in which a component of all RTs is the dur-
ation Tstrength of an early stage in which the
strength of the probe’s representation in memory
is evaluated. If a procedure is used in which
strength discrimination is unlikely to be helpful,
will the Tstrength component be eliminated? In
one such procedure, some N-probes could be
made very familiar, as in Monsell (1978, Exp. 2),
and high accuracy would be required, rendering
strength discrimination unlikely to be helpful. If

this eliminates the strength-evaluation process,
then there should be no N-probe recency effect.
If so, then whether or not the zero intercepts of
the RT pos and RT neg functions decreased would
be evidence about whether the strength-evaluation
process preceded the scanning process, or occurred
in parallel with it.

12.5. Predicted additivity of effects of
Pr{pos} and stimulus quality

The four-stage model for memory scanning
described by Sternberg (1969b, Figure 6) was based
on finding four factors: (1) stimulus quality, (2)
npos , (3) response type, and (4)Pr{pos}, with approxi-
mately additive effects on RT of five of the six pairs.
Additivity of the effects of factors (1) and (4) has
never been tested, but is required by the model.
One way to manipulate Pr{pos} while controlling
probe frequencies would be to use the Sv procedure.

12.6. Retrieval from active versus inactive
memory

Why should these two procedures, discussed in
Section 8, be associated with such precise doubling
of slope? It seems highly implausible that the same
process occurs twice in the LTMmemory condition.
Are they different processes, but driven by the same
oscillation? If so, in what way are they different?
(One possibility is that the two processes in the
LTM condition are activation and comparison.)

Given that the scanning rate depends on the
stimulus ensemble, one test would ask whether
the 2:1 slope ratio is maintained when we increase
the AM slope by using more complex stimuli. If so,
and if the AM slope is found to reflect comparison
rather than activation (as discussed in Section 11),
and the LTM slope reflects comparison preceded
by activation, then it would be interesting to ask
about the effects of varying the similarity of
N-probes to P-set members, which should influ-
ence only the comparison process.95

95If we are able to influence only one of the two processes, and thus disrupt the 2:1 ratio, then having found such an exact 2:1 ratio
becomes even more mysterious.
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12.7. Tests of the LIJ model

Phenobarbital, a barbiturate that works by increasing
the activity of the neurotransmitter GABA, slows
the gamma oscillation (Insel, Patron, Hoang,
Nematollahi, & Barnes, 2012; Whittington,
Traub, & Jefferys, 1995). This suggests asking
whether phenobarbital decreases the scanning rate,
ideally while also measuring gamma oscillations
either at the scalp, or in patients with implanted
electrodes. The possibility that there is a “skip”
process also influenced by the drug would need to
be considered. Also, given that victims of MS
display steeper RT functions, it would be useful to
know whether gamma frequencies in the relevant
brain regions are lower for them.

Jensen and Lisman (1998) explain the exhaus-
tiveness of the search by suggesting that responses
can occur only at the trough of the theta oscillation,
after all members of the P-set have been activated
and compared. They do not argue that no responses
of any kind can occur during other parts of the theta
period. However, if the inhibition does apply to
other responding, then their idea could be tested,
by using an Sf task and introducing with low prob-
ability a special signal that occurs at a random time.
Responses to this signal should then be delayed by
some fraction of the theta period; if the process is
adapting theta, then this period will depend on npos .

13. CONCLUSION

In hindsight, it is easy to recognize that the way the
human mind represents information may differ,
depending on what the information is, how it was
presented, and how much time has elapsed since
then, and that such representation differences
might influence how that information is interro-
gated. Also, it should surely not be surprising that
results may be influenced by availability of cues
(such as level of activation of the internal represen-
tation of the probe) that permit more than one
strategy to be used to perform a laboratory task.

However, following up the early work on
high-speed memory scanning, and tests of the
SES model using Sv and Sf tasks, some investi-
gators overlooked these possibilities: They used
experimental procedures (e.g., Monsell task, or
Ashby task) that produced some results that
were qualitatively consistent with SES (approxi-
mately linear and sometimes approximately paral-
lel RT functions), but others that were not (e.g.,
pronounced effects of recency, non-parallel RT
functions). Findings that these RT functions
and the obtained error rates differed quantitat-
ively from those produced by Sv and Sf tasks
seems to have been ignored. These oversights
generated scepticism about SES and the con-
ditions under which it occurs, and unnecessary
controversy, which, I hope, this paper will help
resolve.

Some investigators have offered alternative the-
ories that explain the discrepant facts they uncov-
ered, but in seeking evidence relevant to these
alternatives they ignored published findings that
would have been troublesome, such as the similarity
of results from Sv and Sf tasks (Sections 2.2, 2.4,
5.2, 6.2), the absence of an effect of nneg
(Section 9), and the behaviour of the RT variance
(Section 5) and of the RT minimum (Section 6).96

Another reason for scepticism about SES may
have been beliefs about brain function in the
1960s and 1970s, which favoured slow and parallel
processes rather than fast and sequential ones.
These beliefs have now changed with recognition
of the importance of brain oscillations at a range
of rates, some even faster than what would be
required to underlie high-speed memory scanning,
and with the development of neurophysiological
models of SES based on such oscillations
(Sections 3, 4).

Misunderstandings about SES led to repeated
claims that its predictions (about the minimum
RT and the RT variance) were violated, claims sup-
ported by data that were questionable or that came
from procedures other than the Sv or Sf task. These
predictions, which were not recognized as

96Selective attention to evidence that favours the author’s position is perhaps to be expected, given the considerable self-discipline
required to follow Chamberlin’s (1890) method of multiple working hypotheses.
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depending on the validity of extensions of the SES
model, and whose testing requires some care, turn
out to be supported (Sections 5.2, 6.2, 6.3).

The two alternative explanations of greatest
interest for the phenomena under discussion are
(a) strength discrimination, in which judgement
about a probe’s membership in the P-set is
based on the strength (or level of activation) of
its directly accessible representation in memory,
and (b) parallel comparisons embodied in evi-
dence-accumulation models such as the diffusion
model. Evidence against (a) is presented in
Sections 7, 8, and 9, with evidence against a
version of (b) in Section 10.

Remarkably, many questions remain about how
people decide whether an item is contained in their
active memory (Section 12).
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APPENDIX A

Experiments: Abbreviations, sources, and sections where mentioned

Abbrev Source Sections

Ashby93 Ashby et al. (1993) 2.1 2.4 3.2 F
Donk12 Donkin and Nosofsky (2012) 2.2 7 10
Frank83 Franklin and Okada (1983) Experiments 1 & 2 2.1 2.4 F
Hock84 Hockley (1984), Exp. 1, Memory search task 2.2 5.2 6.2 10 F
Jacbs06 Jacobs, Hwang, Curran, and Kahana (2006) 2.2

Knoll69 Sternberg, Knoll, and Nasto (1969) 8
McEl89.p McElree and Dosher (1989), Pilot experiment 2.1 2.2 2.3 7
McEl89.2 McElree and Dosher (1989), Exp. 2 2.1 2.2 2.3 7
Monsl78.1 Monsell (1978), Exp. 1 2.1 2.2 7 8.4 F
Monsl78.2 Monsell (1978), Exp. 2 2.1 2.2 7 F

Nosof11 Nosofsky et al. (2011), Exp. 2 2.1 2.2 7
Rcliff78 Ratcliff (1978), Exp. 2 2.1 2.2 F
Schnei77 Schneider and Shiffrin (1977), Exp. 2, Varied Mapping 2.1 2.4 F
Stern66.1 Sternberg (1966), Exp. 1 2.2 2.4 5.2 6.2 10.1 E F
Stern66.2 Sternberg (1966), Exp. 2 2.2 2.4 5.2 10.1 D E F

Stern67 Sternberg (1967c), intact & degraded probes D
Stern67int Sternberg (1967c), intact probes 2.2 2.4 5.2 E F
Stern67int1 First of two sessions in Stern67int 3.2 3.4 5.2 6.2 6.3
Stern69b.4 Sternberg (1969b), Exp. IV, all subjects 10 D F
Stern69b.4eqa Sternberg (1969b), Exp. IV, Pr{pos}= Pr{neg} group 2.2 2.4 5.2 6.2 6.3 F

Stern69a Sternberg (1969a), Section 10 8 8.2
Stern75b Sternberg (1975), Figure 3b 5.2 9 D E
Stern75a Sternberg (1975), Figure 3a 5.2 9 D

aExcept in Section 10, where Pr{pos} is of interest, I have used data from the 12 subjects with Pr{pos}= Pr{neg}, in order to have
approximately equal sample sizes for P-trials and N-trials.
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APPENDIX B

How to investigate high-speed scanning

The importance of subject motivation
Three studies indicate how important it can be to provide per-
formance feedback and performance-based incentives for Sv,
Sf, and Ashby tasks:

Using a variant of the Ashby task, Franklin and Okada
(1983) found in two experiments with a total of 24 subjects,
with digit stimuli and npos= 2, 3, 4, 5, that providing RT feed-
back reduced the mean zero intercept from 694 ms to 461 ms,
and the mean slope from 52 to 41 ms, while the mean error
rate increased only slightly, from 2.1% to 3.1%.

In a study using the Sf task with digit stimuli and npos=
1,3,5, Casement, Broussard, Mullington, and Press (2006)
found that the mean slope for the 10 subjects with no feedback
was 63.2+ 12.4 ms/item, while the mean slope for the 12 sub-
jects with RT feedback was 41.8+ 6.3 ms/item.

In a large study using the Sv task with npos= 1, 2,… , 6, four
different stimulus ensembles, and about 200 subjects, conducted
in Germany and China, Lüer et al. (1998) provided all subjects
with RT and accuracy feedback and examined the effect of aug-
menting this with monetary incentives for half of their subjects.
While the effect on the Chinese subjects was small—mean RT
functions 413+ 34.8npos ms (RT = 534 ms) without, and
431+ 31.5npos ms (RT = 545 ms) with, the incentive—the cor-
responding functions for the Germans showed a large effect:
459+ 53.2npos ms (RT = 644 ms) without and 427+ 40.3
npos ms (RT = 534 ms) with the incentive.

Feedback and incentives
My preference is to use a score that reflects both speed and accu-
racy, weighting the latter heavily, and to provide a monetary
bonus that depends on the score or on its improvement.
Without such incentives, some subjects, especially with enthu-
siastic experimenters who interact with them frequently, may
approach optimal performance, but others may not, making
the interpretation of their data difficult. In a typical experiment,
the score for a block of perhaps 30 trials would be RT in units of
.01 s plus 10 points per error. Subjects would be instructed to
minimize their scores. In a first session, subjects might be told
that if their average score places them among the best half of
the subjects, they will earn a (specified) cash bonus. In a later
session with the same task, the bonus could depend on

whether or how much their scores improved relative to the pre-
vious session. (One goal is to avoid creating large differences in
incentive across subjects.) Short blocks, containing 20–40 trials,
provide opportunities for feedback and periods of rest.

It is not clear howmuch to trust the data from studies that do
not provide feedback and performance-based incentives, such as
studies in which a course requirement forces students to serve as
subjects.

Manipulandum
In Sv and Sf tasks, as I have used them, the manipulandum was a
pair of levers, one operated by each hand, positioned so that the
hands can relax when not responding, with fingertips and wrists
resting on a flat surface, and such that the response is made by
flexing all the fingers of the responding hand.With this arrange-
ment, precision of force or location is required by neither the
resting position nor the response.

Warning signal
Subjects benefit from a visual or acoustic warning (e.g., a brief
tone or noise burst) about 0.7 s before the test stimulus.

Practice
Even if subjects have served in other reaction-time experiments,
I now believe that to obtain reasonably stable data they should
have at least a full session of practice at the task before providing
test data. Furthermore, in my experience, the full beneficial
effects of practice do not show themselves until the next day.
Also, within a session, at least one initial trial block should be
regarded as practice and discarded, and, within each block, the
first two or three trials should be discarded.

Choice of paradigm
Unless there are special reasons for using theSv task, Iwould suggest
using some version of the Sf task:Thedata appear to be less variable,
and it permits separating effects of set and probe. Also, because of
the anomaly for npos= 1, discussed in Section 10.1, I would
suggest using npos values of 2, 3, 4, and 5, and, where possible,
nneg. npos , which, together, require npos+ nneg. 10.

Design and analysis
Ideally, experiments should be designed to enable characteriz-
ation of individuals and their differences; also, analyses should
include a demonstration that sufficient practice was given so
that the test data are relatively stable.

APPENDIX C

Analysis of the Atallah–Scanziani
Hippocampus Recordings

The analysis started with from 2 to 5 min of data from each of
four rats. I then implemented the following steps:

1. Band-pass using a second-order Butterworth filter, from 25
to 100 Hz.

2. Apply a smoothing spline to the result.97

3. Segment the resulting vector into segments of about
0.5 s.

97I realize that these first two steps may be far from the ideal analysis. A Hilbert transformation should probably be applied to the
filter output, and the assumption that the results do not depend strongly on the filter band should be tested.

2072 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2016, 69 (10)

STERNBERG



4. Find the peaks in each segment, using changes in sign of
the first derivative. Define a peak in a segment as one
whose magnitude is at least 15% of the magnitude of the
highest peak in that segment.

5. Define a “high peak” as one whose magnitude is at least as
great as the 60% point in the distribution of all magnitudes
over all segments for that rat. To consider only
those segments with high gamma power, select those
that contain at least six high peaks. This eliminated
about 36% of segments.

6. Determine the inter-peak intervals (IPIs) for all peaks in
the selected segments. Call these IPIs IPI1, IPI2, etc.

7. Select the first six IPIs in each segment.
8. Calculate the first three moments of (a) the IPI1 across

segments, (b) the sum IPI1+ IPI2 across segments, (c)
IPI1+ IPI2+ IPI3, etc. These quantities would corre-
spond to the scanning time for npos= 1, 2, 3.

It is now possible to examine the effect of the number of
concatenated successive gamma periods on the mean, the
variance, etc., of the duration of that concatenation. Means
of the first three moments from the four rats are shown in
Figure 1. Some of the data for individual rats, including

slopes of lines fitted by least squares to the mean and
variance of the first six cumulated durations, are shown in
Table C1.

APPENDIX D

Frequency and recency effects in the Sf task
and variants

In thinking about the effects of probe frequency (Section 9),
it may be important to distinguish relative frequency (RF)
within a P-set or N-set from absolute frequency (AF). For
example, in the experiments described in Section 9, in
which nneg was varied, the probes in the N-set were presented
with (approximately) equal frequency. The result is that
differences in nneg were associated with differences in AF,
but not in RF. Both AF and RF are likely to influence the
memory strength of the probe, but only RF is likely to sys-
tematically influence which probe(s) the subject expects and
hence perhaps prepares for.

Effects with brief response–stimulus intervals
In their variants of the Sf task, Theios and associates used R–
S intervals that were sufficiently brief so as not to permit
feedback or warning signals. In one variant (Theios et al.,
1973), the R-S interval was short (0.5 s), with nneg= npos
and P-sets and N-sets that were nested (providing a consist-
ent stimulus–response mapping) and whose members were
presented with different frequencies. Substantial effects of
stimulus frequency were found on both P-trials and N-
trials. RT pos and RT neg functions are both S-shaped (a
feature accommodated by Theios’s pushdown stack model,
but not by SES), with the mean increases in RT from
npos= 2 to 3, 3 to 4, and 4 to 5 of 30.3, 39.3, and 23.2 ms.
In another variant, Theios and Walter (1974) used the

design of Exp. Stern66.2, but with R–S intervals of 0.5 s or
2.0 s in different trial blocks. The resulting RTpos and
RTneg functions were decelerating rather than linear. Also,
there were effects of RF differences of N-set members on
RTneg values, and pronounced sequential effects on RTpos

and RTneg of both previous probes and previous responses.
Miller and Pachella (1973, 1976) also found pronounced

effects of probe frequency, with brief R–S intervals (1.25 and
1.5 s, respectively, in their two experiments), npos= nneg= 4,
and the P-set and N-set fixed for 800 trials, inviting consist-
ent-mapping effects.

Probe frequency effects in the Sf task
Are there effects of probe frequency or recency in the Sf task,
given an R–S interval of 4.5 s or more that contains feedback
and a warning signal? One answer is provided by Biederman
and Stacy (1974) using a variant of the design of Exp.
Stern66.2: the same probe sequence could be used for
npos= 1, 2, or 4 by changing the mapping of probes onto
responses. By adjusting the relative frequencies among the
stimuli that would comprise the P-sets of npos= 2 and 4,
effects of relative frequency on both positive and negative
responses could be measured. These RF effects were negli-
gible on N-trials, consistent with the absence of effects of
nneg (and AF) described in Section 9, but they were substan-
tial on P trials. How can these effects on P-trials be recon-
ciled with SES? Biederman and Stacy suggest that its locus
is the response-selection stage. Because the error rates were
high in this experiment, with a mean of 6.1% in the equal-
frequency conditions (compared to 1.2% in Exp.

Table C1. Details of the Atallah–Scanziani data

Rat 1 2 3 4

Slope of mean (ms/period) 29.4 29.5 31.8 29.0
Zero intercept of mean (ms) 1.0 −0.5 −2.1 1.4
Variance of one period (ms2) 163 102 150 112
Slope of variance (ms2/period) 144 154 251 143
Covariance of successive

periods (ms2)
−17 −4 20 15

Standard error of covariance
(ms2)

15 13 11 23

Seconds of data 154 296 172 119
Sampling rate (Hz) 4167 4040 4040 2222
Number of segments 320 597 346 265
Number of selected segments 209 399 201 177

Note. The maximum possible covariance is the variance.
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Stern66.2), it should be revisited, adding incentives for good
performance.

Except for Exps. Stern66.2 and Stern67, the Sf experiments
described above all used approximately equal frequencies among
P-probes and different but equal frequencies among N-probes.
For Exps. Stern75b and Stern75a, the AFs of N-probes varied
inversely with nneg. Thus, for Exp. Stern75b, with nneg= 2, 4,
and 8, the corresponding probabilities of individual members
of the N-set were 0.250, 0.125, and 0.063; for Exp. Stern75a,
with nneg= 4 and 6, the corresponding probabilities were
0.125 and 0.083. Yet, as shown in Table 6, there was essentially
no effect of nneg on RT neg in either experiment. (If AF and RF
had the same effects, then, based on observations in Table 1 of
Theios et al. (1973), as nneg was changed from 2 to 8, with a cor-
responding reduction in the frequency of each N-probe, we
would expect an increase in RT neg of about +50 ms, instead
of the obtained non-significant decrease of 4.9 ms.)

Other evidence about probe frequency effects in the Sf task can
be extracted from the results of Exp. Stern69b.4. Because nneg=
10 − npos , as npos took on values of 1, 2, and 4, and Pr{pos}
ranged from 0.25 to 0.75, N-probes were presented with AFs that
ranged from 0.027 to 0.125 (a factor of 4.6), while P-probes were
presented with AFs that ranged from 0.083 to 0.750 (a factor of
9.0). Linear models and associated ANOVAs showed that for
each response type, the effects of numeric variates npos , and
Pr{pos} are additive. After fitting them and the factor subjects, the
effect of probe AF (as a numeric variate) on the RT residuals was
found to be non-significant for both response types.

For Exps. Stern66.2 and Stern67, the variance of probe fre-
quencies among N-probes increased with npos; for npos= 1, 2,

and 4, these variances were 0.0016, 0.0093, and 0.0113, respect-
ively. If N-probe RF had an effect, we would therefore expect
that, relative to the variance of the corresponding RTpos values,
the variance of RTneg would increase for npos. 1. This was
found in neither of Exps. Stern66.2 or Stern67int. We can con-
clude, tentatively, that in the Sf task, probe AF has no effect, and
probe RF has an effect on P-trials but not on N-trials.

Sequential effects in the Sf task
Given the existence of sequential effects in some RT experiments
(such as the “repetition effect”—i.e., facilitation when the stimulus
and response from the preceding trial are repeated), it is reasonable
to ask why, as in the experiments discussed in Section 9, the Sf pro-
cedure does not appear to produce sequential effects, which would,
for example, show up strongly on trials with Δtrials= 1 (which
occur with probability 0.23 on N-trials in Exp. Stern75b). Most
reports of repetition effects are from experiments with short R–S
intervals (as short as 50 ms); the effects decrease as the R–S interval
is lengthened.98 The exceptions of which I am aware, when rep-
etition and other sequential effects are found at longer R–S intervals,
with warning signals and sometimes feedback signals, as in the Sf
task, have almost always involved either a complex mapping of
four stimuli onto two responses (Smith, 1968,Exp. 1), or four stimu-
lus–response pairs (Kornblum, 1969, discrete experiment;
Remington, 1969; Smith, 1968, Exp. 2). Unfortunately for this
account, in the studymentioned above byBiederman andStacy, rep-
etition effects were found for both P-probes and N-probes, with a
magnitude that increased with npos—another reason to revisit that
study.

APPENDIX E

Effect of requiring recall in the Sv task

On each trial in Exp. Stern66.1 subjects were required to recall
the P-set in order of presentation after making their speeded
response. It is conceivable that such a requirement influences
the way in which the P-set is represented and hence the way it
is searched. Based on data from many subjects in two large
experiments modelled on Exp. Stern66.1, but in which the
recall requirement was varied between subjects, Corbin and
Marquer (2008, 2009, 2013) have argued that it does have
such an effect: Averaging over their two experiments (one
described in their 2008 and 2009 papers, the other in their
2013 paper), requiring recall caused the mean RT to be 75 ms
longer and the slope of the RT function to be 18 ms greater
than when recall was not required.

Both with and without recall, however, their subjects were
extremely slow and inaccurate relative to those in Exp.
Stern66.1, rendering their findings hard to interpret. In Exp.
Stern66.1, the fitted RT function was 397+ 37.9npos , with a
mean RT of 529 ms. In contrast, averaging over their two exper-
iments, Corbin and Marquer found that when recall was
required, the RT function was 546+ 64.3npos , with a mean
RT of 771 ms, which is substantially steeper and 242 ms
slower. Mean error percentages in Exp. Stern66.1 in the
speeded response and in ordered recall were 1.3% and 1.4%,
respectively; corresponding values when recall was required in
the Corbin–Marquer experiments were 3.4% and 12.9%,
respectively, substantially greater. The subjects in both exper-
iments were undergraduates, American in Exp. Stern66.1,
French in the Corbin–Marquer experiments.99

Despite these large differences in speed and accuracy, but
because in both experiments, the RT functions averaged over

98Such a decrease was found from 50 to 500 ms (Bertelson, 1961; Smulders et al., 2005), from 50 to 1000 ms (Bertelson & Renkin,
1966; Soetens, 1998), from 100 to 2000 ms (Hale, 1967), from 500 to 2000 ms (Theios &Walter, 1974), from 250 to 750 ms (Ells &
Gotts, 1977), and from 100 to 1000 ms (Pashler & Baylis, 1991).

99After the speeded responses in the experiment by Darley (1973) discussed in Section 11, subjects were required to recall the subset
of the P-set that had not been probed. Atkinson et al. (1974, p. 227) report that results were essentially the same in another, similar
experiment in which such recall was not required.
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subjects were approximately linear, with βneg ≈ βpos , Corbin and
Marquer describe them as successful replications of Exp.
Stern66.1. (Minimizing the importance of such quantitative
differences is common, unfortunately.) Thus, the intriguing con-
jecture that the recall requirement influences the search process
remains to be adequately tested.

There are a number of possible reasons for the poor
performance of the French subjects. One is that they appear to

have been given no feedback in either experiment, other than
being informed about the correctness of their speeded response
after each trial. Nor do they appear to have been told what
defines good performance, or to have been given any incentive to
perform well: There is no mention of the subjects being paid in
the 2008 experiment; they are described as receiving course
credit for participation in the 2013 experiment. (See comments
in Appendix B about the importance of feedback and incentives.)

APPENDIX F

Notes for Tables 1, 2, and 4

Table 1
Exp. Stern67int: Values are means over P-trials and N-trials,

weighted by their relative frequencies (4/15 and 11/15,
respectively) and averaged over the two sessions.

Exp. Stern66.1: Serial recall of the P-set was required after each
speeded response. For npos values of 1, 2,… , 6, mean
recall error percentages were 0, 0, 0, 1.0, 1.6, and 5.7,
respectively, with overall error rates the same for P-
trials and N-trials.

Entries are numerical values found in papers or data records
except for the following, which were read from graphs:

Exp. Hock84: Error rates.
Exp. Monsl78.1: Slope and intercept based on lines fitted to data

from npos= 2,3,4.because data from npos= 1 fell below
the fitted line.

Exp. Monsl78.1, Monsl78.2: Error rates.
Exp. Rcliff78: Error rates.

Table 2
Exp. Stern66.1: Because RT pos for npos = 1 tends to fall below

the least-squares line, unless Pr{pos} is low, slopes
based on npos= 2, 3, 4, 5, 6 are also provided. This
problem does not arise for Exp. Stern66.2, probably
because Pr{pos} was only 0.27 (see Section 10.1).

Exp. Schnei77: Four subjects were run, two with stimulus ensem-
bles of consonants, two with digits. Slopes for individual
subjects are provided, but we are not told which subjects
used which stimulus sets.

Exp. Ashby93: Slopes were determined from measurements of
Figure 1 of Ashby et al. (1993).

Exp. Frank83: Two experiments, each with 12 subjects. The
table shows slopes of their RT functions. Insufficient
data are provided to estimate standard errors. Because
the probe delay (500 ms) was short, these experiments
differ from others that used the Ashby task. One
feature of their results, consistent with the search being
self-terminating, is that for P-trials, the slopes of the
serial-position curves are substantially greater than the
slopes of the RT functions.

Table 4
Exps. Stern66.2 and Stern67int: For these experiments,

Pr{pos}/Pr{neg}= 4/11. “All” refers to the weighted
mean variances, weighted by 4/15 and 11/15.

Exp. Stern67int: Variances were determined for each of the two
sessions, then averaged over sessions for each of the 12
subjects. The table contains means over the 12 subjects
and slopes of linear functions fitted to these means,
together with their standard errors based on between-
subject differences.

Exp. Stern69b.4eq: Individual data for full distributions are no
longer available. What are shown are 10% trimmed
mean variances, and their slopes.

Exp. Stern66.1:The table contains means over the eight subjects,
and slopes of linear functions fitted to these means,
together with their standard errors based on between-
subject differences.

Exp. Hock84: Variances were determined from the reported
mean parameters of fitted ex-Gaussian distributions,
using the fitted linear function for τ, and measuring σ

values from Figure 4 of Hockley (1984).
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