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One approach to understanding a complex process starts with an attempt to divide it into modules: sub-
processes that are independent in some sense, and have distinct functions. In this paper, I discuss an
approach to the modular decomposition of neural and mental processes. Several examples of process
decomposition are presented, together with discussion of inferential requirements. Two examples are
of well-established and purely behavioural realizations of the approach (signal detection theory applied
to discrimination data; the method of additive factors applied to reaction-time data), and lead to the
identification of mental modules. Other examples, leading to the identification of modular neural processes,
use brain measures, including the fMRI signal, the latencies of electrophysiological events, and their
amplitudes. Some measures are pure (reflecting just one process), while others are composite. Two of the
examples reveal mental and neural modules that correspond. Attempts to associate brain regions with be-
haviourally defined processing modules that use a brain manipulation (transcranial magnetic stimulation,
TMS) are promising but incomplete. I show why the process-decomposition approach discussed here, in
which the criterion for modularity is separate modifiability, is superior for modular decomposition to the
more frequently used task comparison procedure (often used in cognitive neuropsychology) and to
its associated subtraction method. To demonstrate the limitations of task comparison, I describe the
erroneous conclusion to which it has led about sleep deprivation, and the interpretive difficulties in a
TMS study.
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1. MODULES AND MODULARITY

The first step in one approach to understanding a
complex process is to attempt to divide it into
modules: parts that are independent in some
sense, and have distinct functions.1 Early in the
last century, scientific psychology, dominated by
behaviourism, emphasized the directly observable
relations between stimuli and responses, and
devoted little effort to describing the perception,
memory, and thought processes that intervene.
During the second half of the century there
was a change in the kinds of questions that psy-
chologists asked and in the acceptable answers.
This change was perhaps influenced by the
growth of computer science, which persuaded psy-
chologists that programming concepts might be
acceptable as precise descriptions of information
processing by people as well as by machines.
And the software-hardware distinction added
legitimacy to theories couched in terms of abstract
information-processing operations in the mind
rather than only neurophysiological processes in
the brain. In the “human information processing”
approach, complex activities of perception,
decision, and thought, whether conscious or
unconscious, came to be conceptualized in terms
of functionally distinct and relatively independent
(“modular”) subprocesses responsible for separate
operations such as the input, transformation,
storage, retrieval, and comparison of internal
representations—modules whose arrangement
was expressed in systematic flow charts.2

Comparing the brain to a digital computer
encourages the distinction between processors
and the processes they implement. The existence
of functionally specialized processors (either

localized or distributed) is a sufficient condition
but not a necessary one for functionally distinct
processes, the concern of the present paper.

The rise in the 1980s of parallel distributed
processing might seem to conflict with the idea
of modular organization of processes, but it need
not: PDP models “do not deny that there is a
macrostructure,” and are intended to “describe
the internal structure of the larger (processing)
units” (Rumelhart, McClelland, & the PDP
Research Group, 1986, p. 12). Furthermore, even
starting with a relatively unstructured neural
network, there is reason to believe that over time
and with experience it will develop functionally
specialized processing modules, and hence, func-
tionally specialized processes (Jacobs & Jordan,
1992; Jacobs, 1999).

Toward the end of the century, it became poss-
ible (using fMRI, for example) to measure the
human brain in action with previously unattainable
spatial resolution. Because functions of the brain
are often implemented by specialized neural pro-
cessors that are anatomically localized, these new
measurement methods encouraged scientists to
attempt the modular decomposition of complex
neural processes, just as they had been doing for
complex mental processes.

In the present paper, I describe an approach to
the modular decomposition of two kinds of
complex process, mental and neural, along with
several examples of its application from the
psychology and cognitive neuroscience literature.
A mental-process module is a part of a process,
functionally distinct from other parts, and investi-
gated with behavioural measures. Such modules
will be denoted A, B, etc. A neural-process
module is a part of a neural process, functionally

1 A module may itself be composed of modules.
2 Heuristic arguments for the modular organization of complex biological computations have been advanced by Simon (1962,

2005) and, in his “principle of modular design”, by Marr (1976), who argued (p. 485) that “Any large computation should be
split up and implemented as a collection of small sub-parts that are as nearly independent of one another as the overall task
allows. If a process is not designed in this way, a small change in one place will have consequences in many other places. This
means that the process as a whole becomes extremely difficult to debug or to improve, whether by a human designer or in the
course of natural evolution, because a small change to improve one part has to be accompanied by many simultaneous compensating
changes elsewhere.”

STERNBERG
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distinct from other parts, and investigated with
brain measures. Such modules will be denoted a,
b, etc.

The important distinction between processes
and processors is sometimes overlooked.
Functional decomposition leads to processes that
occur over time; their arrangement is described
by a flow-chart. In contrast, structural decompo-
sition leads to processors (e.g., as described by
Erickson, 2001; Goodale, 1996; Op de Beeck,
Haushofer, & Kanwisher, 2008) that are parts of
a physical or biological device (such as the brain);
their arrangement can sometimes be described by
a circuit diagram.3

2. THE PROCESS-DECOMPOSITION
APPROACH

2.1. Separate modifiability, selective
influence, process-specific factors, and
functional distinctness

Much thinking by psychologists and brain scien-
tists about the decomposition of complex processes
appeals either implicitly or explicitly to separate
modifiability as a criterion for modularity: Two
(sub)processes A and B of a complex process
(mental or neural) are modules if and only if
each can be changed independently of the other.4

One purpose of the present paper is to explicate
by example the notion of separate modifiability
and the conditions under which one can assert it.
To demonstrate separate modifiability of A and
B, we must find an instance of selective influence.
That is, we must find experimental manipulations
(factors) F and G that influence A and B selec-
tively, i.e., such that A is influenced by F but is
invariant with respect to G, whereas B is influ-
enced by G but is invariant with respect to F.

Often one starts with hypotheses about what the
component processes are, and about corresponding
process-specific factors that are likely to influence
them selectively. Alternatively, the selectivity of
effects may be discovered in experiments with
other goals. Separate modifiability of A and B
is also evidence for their functional distinctness;
information about what a process does is provided
by the sets of factors that do and don’t influence
it; if two processes have the same function they
are likely to be influenced by the same factors.5

With separate modifiability as the criterion, it
should be clear that modularity is a relation
between or among processes, not an absolute
property of one process.

2.2. Processes and their measures, pure and
composite, and combination rules

How do we demonstrate that a process is influ-
enced by a factor, or invariant with respect to it?
We know only about one or more hypothesized
measures MA of process A, not about the process
as such. Depending on the available measures,
there are two ways to assess separate modifiability
of A and B.

Pure measures. Suppose we have pure measures
MA and MB of the hypothesized modules: A
pure measure of a process is one that reflects
changes in that process only. Examples include
the durations of two different neural processes
(see Section 3), and the discriminability and cri-
terion parameters of signal-detection theory
(which reflect sensory and decision processes; see
Section 5). To show that F and G influence
A and B selectively, we must demonstrate their
selective influence on MA and MB. That is, we
must show that MA is influenced by F and
invariant with respect to G, and vice versa for MB.

3 Machamer, Darden, and Craver (2000) distinguish “activities” and “entities”.
4 This criterion for modularity seems to be far weaker than the set of module properties suggested by Fodor (1983), according to

whom modules are typically innate, informationally encapsulated, domain specific, “hard-wired”, autonomous, and fast. However,
domain specificity appears to imply separate modifiability.

5 Such double dissociation of subprocesses should be distinguished (Sternberg, 2003) from the more familiar double dissociation
of tasks (Schmidt & Vorberg, 2006), discussed in Section 9.
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If Fj has two levels, j = 1, 2, the effect of F on MA

is a difference:

effect(F ) = MA(F2) −MA(F1). (1)

For factors with multiple levels, the effect can be
regarded as a vector of differences associated
with successive ordered levels. The logic for infer-
ring separate modules when we hypothesize that
we have pure measures is shown in Table 1.6,7

The {pk} are four properties of the data; MA �

F should be read as “MA is influenced by F”;
MB �/ F should be read as “MB is not influenced

by F”. All four of the requirements are critical; the
instances of invariance are meaningful only if
we also know that both factors are potent and
both measures are sensitive. Unfortunately, it is
seldom appreciated that persuasive evidence for
invariance cannot depend solely on failure of a
significance test of an effect: such a failure could
merely reflect variability and low statistical power.8

Composite measures. Suppose that instead of pure
measures we have a composite measure MAB of
the hypothesized modules—a measure to which
they both contribute. Examples of possible

Table 1. Inferential logic for pure measures

Joint Hypothesis

H1: Processes A and B are modules (separately modifiable).
H2: MA, MB are pure measures of A, B.

Prediction

We may be able to find factors F and G that
influence MA (A) and MB(B) selectively:

p1:MA � F, p2:MB �/ F , p3:MB � G, p4:MA �/ G.

Alternative Results

We find factors F, G that influence
MA and MB selectively.

We fail to find such factors.

Corresponding Inferences

Support for joint hypothesis
H1 + H2.

Refutes one/both of H1, H2, or we
didn’t look enough for F, G.

6 Adapted from Table 2 of Sternberg (2001) by permission.
7 When the hypotheses about A and B are sufficiently detailed to specify particular process-specific factors that should influence

them selectively, this leads to an alternative formulation of the inferential logic, in which the specification of F and G is included in
the joint hypothesis, with the remainder of the reasoning adjusted accordingly. For a discussion of such alternatives, see Sternberg
(2001, Section A.2.3).

8 A common error of interpretation is to assert the nonexistence of an effect or interaction merely because it fails to reach stat-
istical significance. In evaluating a claim that an effect is null, it is crucial to have at least an index of precision (such as a confidence
interval) for the size of the effect. One alternative is to apply an equivalence test that reverses the asymmetry of the standard signifi-
cance test (Berger & Hsu, 1996; Rogers, Howard, & Vessey, 1993). In either case we need to specify a critical effect size (depending
on what we know and the particular circumstances) such that it is reasonable to treat the observed effect as null if, with high prob-
ability, it is less than that critical size. The critical size might be determined by the sizes of effects generated by plausible models.
Bayesian methods (e.g., Gallistel, 2009; Rouder, Speckman, Sun, Morey, & Iverson, 2009) provide another alternative, especially
if the null is framed as an appropriate interval hypothesis rather than a point hypothesis. An example of suitable caution about infer-
ring a null effect can be found in Ghorashi, Enns, Klein, and Di Lollo (2010).
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composite measures are the event-related potential
(ERP) at a particular point on the scalp (which
may reflect several ERP sources in the brain),
and reaction time, RT (which may depend on
the durations of more than one process of interest).
To support a hypothesis of selective influence in
this case, we must also know or have evidence
for a combination rule—a specification of how the
contributions of the modules to the measure
combine. With pure measures, factorial exper-
iments (rather than separate experiments for
different factors) are desirable, because they
provide efficient tests of generality and promote
new discoveries at little cost. With a composite
measure, factorial experiments are essential, to
assess how the effects of the factors combine;
unfortunately such experiments are rare, despite
their efficiency (Section 12.5).

The logic for inferring separate modules using a
hypothesized composite measure when we either
know or hypothesize that the combination rule is
summation is shown in Table 2.9,10 To understand
Table 2, it is important to keep in mind what the
effect of a factor is, and what it means for effects of
different factors to be additive. To simplify the dis-
cussion, let us assume that there are two factors,
each with just two levels. Let u and v be the con-
tributions of processes A and B to MAB . If sum-
mation is the combination rule, MAB = u+ v. If
A and B are selectively influenced by factors F
and G,

MAB(Fj ,Gk) = u(Fj ) + v(Gk), (2)

where u(Fj ) is a function that describes the relation
between the level of F and the contribution of A
to MAB.

Table 2. Inferential logic for a composite measure with summation as the
combination rule

Joint Hypothesis

H1: Processes A and B are modules (separately modifiable).
H3: Contributions uA, vB of A, B toMAB (A, B) combine by summation.

Prediction

Wemay be able to find factors F and G that influence A and B selectively:

p′1:uA � F , p′2:vB �/ F, p′3:vB � G, p′4:uA �/ G,

and jointly influence no other process. If so, their effects on MAB

will be additive.

Alternative Results

We find factors F and G with
additive effects on MAB .

We fail to find such factors.

Corresponding Inferences

Support for joint hypothesis
H1 + H3.

Refutes one/both of H1, H3,
or we didn’t look enough for F, G.

9 Adapted from Table 3 of Sternberg (2001) by permission.
10Whereas properties {pk} (Table 1) apply to observable quantities, the analogous properties {p′k} (Table 2) apply to contributions

to a composite measure that are not directly observable.
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Now in general, we work with averages rather
than individual values of MAB, and we regard u,
v, and MAB as random rather than deterministic
variables. Using M , u, and v to indicate
the means of these random variables, it is
convenient that with no further assumptions,11

Eq. 2 implies:

MAB(Fj ,Gk) = �u(Fj ) + �v(Gk). (3)

In what follows, I treat the levels of factors as
ordered, which permits describing changes in
level as increases or decreases. From Eq. 2 it is
easy to show that F and G are additive factors:
the combined effect on MAB of increasing
the levels of both F and G is the sum of the
effect of increasing only F and the effect of
increasing only G:

effect(F ,G)

;MAB(F2,G2) −MAB(F1,G1)

= [u(F2) + v(G2)] − [u(F1) + v(G1)]

= [u(F2) − u(F1)] + [v(G2) − v(G1)]

; effect(F ) + effect(G). (4)

Eq. 2 also implies that the effect of each factor will
be invariant over levels of the other. Thus,

effect(F |G = Gk)

;MAB(F2,Gk) −MAB(F1,Gk)

= [u(F2) + v(Gk)] − [u(F1) + v(Gk)]

= [u(F2) − u(F1)], (5)

regardless of Gk. A given measure may be pure or
composite, depending on the factors being varied
and the hypothesized modules of interest. This
attribute of a measure is part of the joint
hypothesis that is tested as part of the process-
decomposition approach.12,13

2.3. Overview of examples and issues

Much of what follows consists of descriptions of
successful examples of the process-decomposition
approach. Examples will be referred to by the
section numbers in which they are first discussed.
With two exceptions, the successful examples
involve factorial experiments with two factors.
The exceptions are Ex. 3.1, in which the effects
of the two factors are studied in separate experi-
ments, and Ex. 4.3, in which the effects of three
factors are considered. In all cases, the factors
have been selected because it is hoped that they
will be “process-specific”: that they will selectively
influence only one of the two or more processes
that are hypothesized to underlie performance of
the task. Three examples (10.2, 10.3, and 10.4)
are intriguing and tantalizing cases where the
approach could have been used but was not,
because of incompleteness of design or analysis.

In Section 3 I discuss two applications based on
electrophysiological measurements at the scalp from
which pure measures are derived. In both cases,
two neural modules are identified: In Ex. 3.1, in
which the modules are associated with encoding
two different aspects of the stimulus, they are found
to operate in parallel. In Ex. 3.2, in which the
modules are associatedwith preparation of twodiffer-
ent aspects of the response, they are found to operate
successively, as processing “stages”.TheRTdata from
Ex. 3.2 are discussed in Section 4.1, where the RT is
treated as a composite measure and shown to lead to
the identification of two mental modules that corre-
spond to the neural modules inferred from the elec-
trophysiological data discussed earlier. (By
“correspond to” I mean that their durations are influ-
enced selectively by the same factors and to the same
extent.) The inference from the RT data of Ex. 3.2
exemplifies the method of additive factors (AFM),
discussed more generally in Section 4.2, and applied

11 Matters may not be so simple for other combination rules, such as multiplication; see Section 8.2.
12 The reasoning described in Table 2 is sometimes erroneously expressed as “If we assume H3 then additivity confers support

on H1.” This ignores the support that additivity also confers on H3.
13 It is important to note that whereas factors that selectively influence serially arranged processes will have additive effects on

mean RT , this is not the only possible basis for additive effects on an interesting measure, despite beliefs to the contrary (e.g.,
Poldrack, 2010, p. 148; Jennings, McIntosh, Kapur, Tulving, & Houle, 1997, p. 237). The critical requirement for additivity is com-
bination by summation, whatever its basis.
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in Section 4.3 to the problem of locating the effect of
amanipulation of interest (sleep deprivation)within a
pair of already established mental modules, one for
encoding the stimulus, the other for selecting the
response.

As discussed in Section 5, signal detection theory
has provided a widely applied method for measuring
sensory processes in tasks that also involve decision
processes, but has in general failed to isolate those
decision processes from sensory factors. Ex. 5
illustrates a variant of the method that succeeds,
and thereby demonstrates the modularity of the
sensory and decision processes, in an experiment
with pigeons in which the decision factor is not
the traditional payoff matrix.

To the extent that there is localization of function
in the brain, so that two or more modular processes
are implemented in disjoint regions, and to the
extent that the level of activation in a region varies
with changes in the process it implements, the level
of such activation can function as a pure measure of
the process. In Sections 6.3 and 6.4 I discuss
two examples in which fMRI (BOLD) signals in
different brain regions were measured for this
purpose; in both cases, RTs were measured as well.
In Ex. 6.3 (number comparison), in which RT
measurements in a similar experiment had already
indicated separate stages for encoding the test
number and comparing it to the target, both the
new RT data and the fMRI data support this
analysis, suggesting mental and neural modules
that correspond.However, the fact that the direction
of the effect of the encoding factor on the fMRI
response differs in different brain regions is impor-
tant. In Ex. 6.4 (manual choice-reaction with four
stimulus-response pairs) the fMRI data support the
hypothesis of modular neural processes for stimulus
encoding and response selection, but unlike earlier
observations of effects on RT from several similar
paradigms, the effects of the two factors on RT
interact rather than being additive, raising questions
of interpretation. One important finding in this
example is the additivity of effects of the encoding
and response-selection factors on the fMRI
measure in the two brain regions where both
factors were found to have effects. In these regions,
the fMRI signal appears to be a composite measure.

Examples 6.5 and 8.1 use the fMRI adaptation
method; in both cases the measure, whose
magnitude increases with the dissimilarity of the
current stimulus to previous ones, is composite,
raising the issue of the combination rule. Ex. 6.5,
concerned with the perception and memory of
scenes, shows that different modular processes
are responsible for immediate and delayed adap-
tation effects in the parahippocampal place area,
which seems to require different short-term and
long-term memory representations.

Perhaps because factorial experiments are rela-
tively rare in studies of brain activation, we have
had little experience in considering the implications
of the additivity of effects on fMRI measures. It is
tempting to infer that modular brain processes are
responsible. In Section 7 I consider for both RT
(7.1) and fMRI (7.2) the conditions under which
inferences from additivity to modularity are
justified, and describe inferential requirements and
limitations that are sometimes overlooked.

In Section 8 I provide brief summaries of four
additional examples of the process-decomposition
approach, using different composite measures,
to show the diversity of applications. Ex. 8.1 uses
the fMRI adaptation method to test the idea that
perceptually separable dimensions are encoded by
differentneural processes,whereas perceptually inte-
gral dimensions are not. One reason for including
Ex. 8.2, a classic study that provides evidence for
modular spatial-frequency analyzers in visual
pattern detection, is that unlike the other examples
that use composite measures, the combination rule
here is multiplication rather than summation, and
the measure is the proportion of errors. An outline
of the inferential logic is included. In Ex. 8.3, the
composite measure with a multiplicative combi-
nation rule is the proportion of correct responses;
the application is to speeded lexical decisions. Ex.
8.4 uses the amplitude of the event-related potential
at multiple scalp locations as a set of related compo-
site measures, powerful because of its fine temporal
resolution and multiple locations.

In Section 9 I contrast the process-decompo-
sition approach with the task-comparison method.
Here, inferences are drawn from the effects on
different tasks of various factors, together with
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theories about the processes used to accomplish
those tasks. Examples of factors that have been
used are the presence or absence of sleep deprivation
and the presence or absence of a lesion in a particu-
lar brain region. To illustrate limitations of the
method, I describe a comparison of the effects
of repetitive transcranial magnetic stimulation
(rTMS) on two tasks of tactile perception
(Section 9.1). One variety of task comparison is
Donders’ subtraction method, originally developed
for RT experiments, but, in recent years, applied
to brain-activation measures (Section 9.2). Unlike
task comparison, which is often used in a way that
requires various assumptions (includingmodularity)
to be made without test (Shallice, 1988, Ch. 11),
the process-decomposition approach incorporates
such tests. In Section 9.3, I describe the conflict
between the conclusion from Ex. 4.3 that the
effect of sleep deprivation is selective, and claims,
based on task comparison, that the effect is global.

In Section 10, I consider experiments in which
the effects of transcranial magnetic stimulation
(TMS) on RTs in visual search and number-
comparison judgements were measured. In these
experiments, TMS of a brain region R is found to
increase RT without otherwise disrupting per-
formance. The presence and absence of TMS in
such a region can be regarded as two levels of a
factor, TMSR. If this factor influences RT , region
R is inferred to play a role in performance of the
task. However, the potential of TMS to associate
brain regions with modular subprocesses and to
provide evidence about separate modifiability is rea-
lized only when TMSR is used together with other,
process-specific factors, to determine which of
their effects are modulated by TMS, and which are
not. While promising with respect to these goals,
the studies discussed are incomplete.

The traditional task of cognitive neuropsychology
is to learn about the cognitive functions of the normal
brain by studying what happens to them when it is
damaged, typically by comparing the effects of brain

damage in different tasks. Can brain damage also
be used in the process-decomposition approach?
This question is considered in Section 11; several
considerations lead to a negative answer. Instead,
the two approaches can inform each other.

Several additional issues are considered briefly
in Section 12.

In Sternberg (2001), referred to as
“SM:,Section.”, I discuss and defend the
process-decomposition approach in more detail,
further discuss its inferential logic, describe its
antecedents, provide more detail about Exs. 3.1,
3.2, 4.3, 5, 8.2, and 8.4, describe other examples
using different species and different behavioural
and neural measures, discuss the treatment of
data, and consider issues of experimental design.

3. DECOMPOSING NEURAL
PROCESSES WITH THE
LATERALIZED READINESS
POTENTIAL

3.1. Parallel modules for discriminating
two stimulus features

Consider a trial in a choice-reaction experiment
where two alternative responses are made by the
two hands. When enough information has been
extracted from the stimulus to permit selection of
the hand, but before any sign of muscle activity,
the part of the motor cortex that controls that
hand becomes more active than the part that
controls the non-selected hand. This asymmetric
activity can be detected as an increase in the
averages over trials of the difference between elec-
trical potentials (ERPs) at the two corresponding
scalp locations.14 Let Amc(t) (an index of motor-
cortex asymmetry) express this difference as a func-
tion of time after stimulus onset (if “stimulus
locked”), or as a function of time before the overt
response (if “response locked”). Amc(t) is normally

14 As in some other brain measurements (e.g., PET, fMRI), the poor S/N ratio often means that averaging over trials is required
for the measures to be interpretable. Here, the “noise” is due partly to neural events unrelated to the task being performed, whose
contributions are reduced by combining subtraction of the pre-stimulus baseline level with an averaging process that reveals only
those events that are consistently time-locked to the stimulus or the response.
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zero, but is defined so as to become positive when
the (correct) response hand is selected; the increase
of such asymmetry is called the lateralized-readiness
potential (LRP). The onset time of the LRP is thus
an estimate of the time at which the side of the
response (left or right) has been selected.

Consider a situation in which two different
features of the same stimulus must be discrimi-
nated to determine how to respond. Are modular
neural processes involved in doing so? And, if so,
how are they organized temporally? Osman,
Bashore, Coles, Donchin, and Meyer (1992)
devised a clever way to ask these questions, using
the LRP. On each trial, the visual stimulus had
two features. Its position (left versus right, which
was rapidly discriminated) indicated which
response to make should a response be required.
Its category (letter versus digit, which was
discriminated more slowly) indicated whether
this was a “Go” trial (on which the selected
response should be activated) or a “NoGo” trial
(on which no response should be made). Under
these conditions, the LRP occurs even on trials
with no overt response, and with an onset that is
indistinguishable from the LRP on “Go” trials.

I shall use “Event 1” to mean the onset of the
LRP; the latency T1 of Event 1 can thus be used
to indicate when the stimulus location has been dis-
criminated and the response selected. Let us denote
this response selection process by a. Normally (on
“Go” trials) Amc continues to rise until the overt
response is initiated. If a “NoGo” signal tells the
subject not to respond, however, Amc starts falling.
The time at which Amc(t;NoGo) diverges from
Amc(t;Go)—the latency T2 of “Event 2”—can thus
be used to indicate when the stimulus category (the
Go versus NoGo signal) is discriminated and
response preparation ceases. Let us denote this cat-
egory discrimination process by b.

Events 1 and 2 indicate the completion of pro-
cesses a and b. Can response preparation start
when the location but not the category of the stimu-
lus has been discriminated? And, if so, can category

discrimination proceed in parallel with response
preparation? To answer such questions, Osman
et al. (1992) examined the effects of two factors:
One (in Exp. 1) is Go-NoGo Discriminability,
GND, which should influence b; it could be easy
(letter and digit with dissimilar shapes, GND1) or
hard (similar shapes, GND2). The other factor (in
Exp. 2) is the spatial compatibility of the
stimulus-response mapping, MC (Mapping
Compatibility), which should influence a; it could
be compatible (respond with the hand on the same
side as the stimulus, MC1) or incompatible
(respond with the hand on the opposite side,MC2).

Idealizations of the resulting Amc(t) functions are
shown in Figure 1. Each of the four panels shows
the pair Amc(t;Go) and Amc(t;NoGo) for one con-
dition. The two latency measures for a condition
were derived in different ways from this pair of
Amc(t) functions: The latency T1 of Event 1
(onset of the LRP) is the time at which the sum
of the two Amc(t) functions reliably exceeds baseline.
The latency T2 of Event 2 (divergence of the Go
and NoGo LRPs) is the time at which their differ-
ence reliably exceeds zero. In Exp. 1, GND influ-
enced T 2 (by 43 ms) but not T 1 (compare
Figures 1A1 and 1A2), showing that GND influ-
enced b but not a. (T 1 ≈ 170 ms on both Go
and NoGo trials.)15 Because the stimulus influ-
enced response preparation before both of its fea-
tures were discriminated, these findings from
Exp. 1 demonstrate the transmission of “partial
information” from the perceptual process to the
response process.

In one of the conditions of Exp. 2, the stimu-
lus-response mapping was incompatible, which
was expected to delay selection of the response.
To ensure that stimulus location had an opportu-
nity to influence response preparation on NoGo
trials in both conditions, it was important to
prolong the Go-NoGo discrimination.16 Osman
et al. therefore reduced letter-digit shape discri-
minability so as to increase T 2 from about
240 ms to about 350 ms. In this experiment, MC

15 The effect of GND on T 1 was 2.5+ 5.0 ms; its effect on T 2 was 43+ 14 ms; the difference between these effects is 41+ 11
ms (N = 6; p ≈ .01).

16 It is this requirement that would have made it difficult to implement a suitable factorial experiment.
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influenced T 1 (by 121 ms) but not T 2 (compare
Figures 1B1 and 1B2), showing that MC influ-
enced a but not b. (T 2 ≈ 350 ms on both Go
and NoGo trials.)17 Increasing the level of
mapping difficulty from MC1 to MC2 therefore
reduced the interval between Event 1 and Event 2.

Taken together, the two experiments show that
MC andGND influenced the two measures T1 and
T2 selectively, supporting the hypothesis that
they are pure measures of two different modular
processes (Table 1). The results also show how a

and b are arranged in time. Suppose they were
arranged sequentially, as stages. Prolonging the
first of two stages by Dt ms should delay com-
pletion of the second by the same amount: the
prolongation Dt should be propagated to the com-
pletion time of the next stage. If we assume equal
delays between completion of each process and its
effect on Amc(t), then the order of process com-
pletions would be the same as the order of

Events 1 and 2.18 The finding (Exp. 2; Figure
1B) that the effect of MC on T1 is not propagated
to T2 would then be sufficient to invalidate a stage
model. If we relax the equal-delays assumption,
permitting us to assume the opposite order of
process completions, then the propagation prop-
erty requires that any effects on T2 propagate to
T1, contrary to what was found (Exp. 1; Figure
1A) for the effect of GND. An alternative to a
stages arrangement is that a and b operate in par-
allel, such that the RT (on Go trials) is determined
by the completion time of the slower of the two.
Such an arrangement is consistent with the
further finding (from Exp. 2) that the effect of
MC on RT (16 ms) is dramatically smaller than
its effect on T 1 (121 ms). This can happen
because regardless of how much the duration of
a is shortened by changing the level of MC,
response initiation on a Go trial must await the
completion of b as well.

Figure 1. Schematic idealized asymmetry functions Amc(t) from Osman, Bashore, Coles, Donchin, and Meyer (1992). Event 1 is the LRP
onset; Event 2 is the onset of the divergence of Amc(t; Go) from Amc(t; NoGo). Panels A1 and A2: Asymmetry functions from Exp. 1, in
which Go-NoGo Discriminability could be easy (GND = GND1) or hard (GND = GND2). Panels B1 and B2: Asymmetry functions
from Exp. 2, in which Mapping Compatibility could be compatible (MC = MC1) or incompatible (MC = MC2). (Fig. 3 of Sternberg,
2001; adapted by permission.)

17 The effect ofMC on T 1 was 121+ 17 ms; its effect on T 2 was 3.3+ 8.8 ms; the difference between these effects is 118+ 21
ms (N = 6; p ≈ .01).

18 T2 would then be a composite measure, influenced by both factors, with summation as the combination rule.
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These findings about RT contrast to those of
Ex. 3.2, below, in which pure measures based on
the LRP provide evidence for a serial arrange-
ment of two neural processes. In that case,
unlike this one, a composite behavioural
measure (RT ) leads to a similar analysis of corre-
sponding mental processes, as we shall see in
Section 4.1. In the present example, however,
T1 is a measure of a process (response selection,
separated from response execution) for which
there may be no behavioural measure, and
whose contribution to RT may be large or
small, depending on the level of GND.

3.2. Serial modules (stages) for preparing
two response features

The LRP provides an estimate of the time when
the side of the response is selected; this makes it
possible to ask whether the neural process
responsible for selecting the side of the response
is separate from the neural process responsible
for preparing other aspects of the response. This
possibility was exploited in an experiment by
Smulders, Kok, Kenemans, and Bashore (1995).
It was a two-choice RT experiment with single-
digit stimuli mapped on left-hand and right-
hand responses. Two factors were varied orthog-
onally across blocks of trials: Stimulus Quality
(SQj : digit intact versus degraded) and Response
Complexity (RCk: one keystroke—simple—versus
a sequence of three keystrokes—complex—made
by fingers of the responding hand). In addition
to the composite measure RTjk, Smulders et al.

measured the onset time of the LRP, based on
both stimulus-locked (LRPs) and response-
locked (LRPr) averaging of the Amc(t) functions.
Let the LRP onset times be Tsjk (measured from
the stimulus, and using LRPs), and T ∗

rjk (a negative
quantity, measured from the response, and using
LRPr), and let Trjk = RTjk + T ∗

rjk. Tsjk and Trjk

are then alternative estimates of the same time
point between stimulus and response, measured
from the stimulus; let T·jk be their mean.19

Averaging over the four conditions, RT·· = 416
ms and T··· = 264 ms. If a is the neural process
from stimulus to LRP onset, and b is the neural
process from LRP onset to response, these values
permit us to estimate their durations (pure
measures of a and b) averaged over the four con-
ditions: Da·· = T··· = 264 ms and Db·· =

RT·· − T··· = 152 ms.
Shown in the A and B panels of Figure 2 are the

estimated durations of processes a and b separated
by condition: Dajk = T·jk, and Dbjk = RTjk − T·jk.
Because Tsjk and Trjk give similar estimates for
effects of the two factors on Da and Db, the esti-
mates are based on T·jk. The results show that the
two factors SQ and RC have selective effects on
Da and Db. This supports the hypothesis that
in this situation the LRP onset indeed defines a
temporal boundary between two neural modules
that function sequentially, as stages, consistent
with the reasoning in Table 2.20

What are stages? They are functionally distinct
operations that occur during nonoverlapping
epochs.21 In a process with two stages, the
stream of operations between stimulus and

19 When a mean is taken over values of a subscript, that subscript is replaced by a dot.
20 The error variance values reported by Smulders et al. (1995) and the SE estimates provided here are likely to be overestimates

(because balanced condition-order effects were treated as error variance); the data required to calculate better values are no longer
available (F. T. Y. Smulders, personal communication, September, 1999).

21 It is perhaps a confusion between time (process) and space (processor) that has led some commentators (e.g., Broadbent, 1984)
to believe that a process whose modules are organized in stages cannot include feedback because it must be implemented by a “pipe-
line”: an ordered set of processors through which information passes in a fixed direction from input to output. Broadbent’s “pipelines”
constrain the relation between process and representation: later processes must operate on representations that have been processed
more highly—that are “further from the input”. Stage models need not be constrained in this way; they merely partition processing
operations into temporally successive components. There is no reason why a later stage cannot make use of new sensory information
(such as feedback) in (re)processing earlier sensory information. For further discussion of Broadbent’s (1984) critique of stage models,
and the distinction among three kinds of stage (completion-controlled, outcome-contingent, and data-dependent), see Sternberg
(1984).
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response can be cut, separating Stage A (the pro-
cesses before the cut) from Stage B (the processes
after the cut). IfA and B are influenced selectively
by factors F and G, respectively, this means that
F can have an effect only before the cut, and G
only after the cut. In most analyses based on be-
havioural data, the cut is hypothetical, inferred
from the additivity of factor effects. In the
neural process analysis discussed above, the cut
corresponds to a particular observable neural
event, and divides the neural process into two
subprocesses whose durations are selectively
influenced by the two factors. This more direct
observation of processing stages supports the
inferences from the RT data. Note that by exam-
ining the effects of other factors, A (or B) might
be further decomposed into stages or non-stage
modules, only one of which needs to be influ-
enced by F (or G).

In contrast to Da and Db, which are hypoth-
esized (and confirmed) to be pure measures,
RTjk, shown in Panel C, is a composite measure:
With two stages contributing to the time from
stimulus to response, the RT reflects contributions
from both. In Section 4.1, I consider the RT data
from this experiment and how the inferred stages
A and B relate to the neural processes a and b

inferred from the LRP data.

4. MENTAL PROCESSING STAGES
INFERRED FROMREACTION TIMES

4.1. Analysis of the reaction-time data in
Ex. 3.2

The conclusion in Ex. 3.2 is that the time between
the stimulus digit and the response (the RT) can
be partitioned into two intervals, from stimulus
to LRP (duration Da, influenced by SQ but not
RC), and from LRP to response (duration Db,
influenced by RC but not SQ). Consider just the
mean reaction time, measured under the four
factor-level combinations:

RT jk = Daj +Dbk = Da(SQj ) +Db(RCk). (6)

Suppose we had only those data and not the LRP
data. It follows from the partitioning of RT shown
in Eq. 6 that the combination rule for the contri-
butions of neural processes a and b is summation.
As discussed in Section 2.2, that and the selective
influence of factors SQ and RC on a and b imply
that the effects of SQ and RC on RT are additive.
In general, factors that selectively influence the
durations of distinct sequential components of the
RT must have additive effects on the composite
measure. Thus, if a hypothesis asserts that the RT
in a particular task is the summed duration of two
modular mental processesA and B arranged sequen-
tially (as stages) with durationsTA andTB, and selec-
tively influenced by factors F and G, we should
expect:

RT (Fj ,Gk) = TA(Fj ) + TB(Gk). (7)

The goodness of fit of the parallel unbroken
lines in Figure 2C confirms the expectation of
additivity for the RTs in the experiment by
Smulders et al. and supports the joint hypothesis
of Table 2. (The interaction contrast of SQ and
RC was a negligible 2+ 5 ms.) However,
because in this case we also have measures of the
durations of neural modules (from the analysis of
the LRP data) we can go further: we can ask
whether the mental modules derived from the
purely behavioural analysis of the composite
measure correspond to the neural modules inferred
from the LRP-based pure measures.

Thus, suppose that the mental modules A and
B responsible for the additive RT effects are
implemented by the neural modules a and b,
demarcated by the LRP. Then, not only should
the same factors influence them selectively, but
also the sizes of their effects should be the
same. Agreement among the effect sizes can be
examined by assuming that the two factors
indeed have perfectly selective effects on a and
b, and by using the appropriate subsets of the
LRP data to “predict” the pattern of the {RT jk}.
Thus, we should be able to use just the data in
Figure 2A1 (averaging over RC levels) to obtain
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the estimates D̂a(SQ1) and D̂a(SQ2). Similarly,
we should be able to use just the data in Figure
2B2 (averaging over SQ levels) to obtain the esti-
mates D̂b(RC1) and D̂b(RC2). If RT = Da +Db

we have the “predictions” RT ∗
jk = D̂a(SQj ) +

D̂b(RCk) for the four conditions.22 The dotted
lines in Figure 1C show that the agreement is

good: RT jk ≈ RT ∗
jk. Numerically, the effects of

SQ and RC on the composite measure RT are
35+ 3 ms and 25+ 7 ms, close to their mean esti-
mated effects (34 and 21 ms) on the pure measures
Da and Db.

Another illustration of the independent use
of two measures is provided by Ex. 6.3: again,

Figure 2.Means over 14 subjects of data from Smulders, Kok, Kenemans, and Bashore (1995). The panels in each pair, A1-A2 and B1-B2, show
the same values, plotted differently. Estimated durationDajk of Stage a, from stimulus presentation to LRP onset (Panels A1, A2); and duration
Dbjk of Stage b, from LRP onset to response (Panels B1, B2). These are shown as functions of Stimulus Quality (SQj , Panels A1, B1); and of
ResponseComplexity (RCk , Panels A2, B2). Data in Panels A1 and B1 are separated by level of RC; those in Panels A2 and B2 are separated
by level of SQ . Also shown in Panels B1 and A2 are null-effect models.Main effects of SQ onDa andDb (with+SE) are 33+ 6ms (Panel
A1) and 1+ 7ms (Panel B1);main effects of RC onDa andDb are 4+ 7ms (Panel A2) and 21+ 6ms (Panel B2).The interaction contrasts
are6+ 13ms (stagea) and−8+ 11ms (stageb).TheRT data (discussed inSection 4.1) are shown inPanelC, togetherwith two fittedmodels.
One (unbroken lines) is the best-fitting additive model (mean absolute deviation 0.5 ms); the other (dotted lines) is an additive model based on
estimates of process durations from the LRP data (mean absolute deviation 1.8 ms). For the RTs, the normalized interaction contrast is 7.0%
[For a dimensionless normalized measure of the interaction in 2 × 2 data, I express the interaction contrast as a percentage of the geometric
mean of the absolute values of the main effects. This facilitates comparison of the interaction magnitudes associated with different measures. See
Roberts & Sternberg (1993), Table 26.1]. (Fig. 15 of Sternberg, 2001; adapted by permission.)

22 This way of deriving the {RT ∗
jk} forces their means into agreement: RT ∗

·· = RT ··; the question of interest is whether the
differences among the four values agree.
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pure measures to ask about the structure of a
neural process, and a composite measure to ask
about the structure of a corresponding mental
process.

4.2. The method of additive factors

The approach to decomposing complex mental
processes into subprocesses that is exemplified by
the RT analysis described above depends on the
observation that if a process can be partitioned
into subprocesses arranged in stages, then the RT
becomes an example of a composite measure with
summation as the combination rule; in this case
if two factors F and G change RT but influence
no stages in common (“selective influence”), their
effects on mean reaction time should be
additive, as described in Table 2. Conversely, if
the effects of factors F and G on RT in a process
organized in stages interact, so that F modulates
the effect of G rather than leaving it invariant,
then F and G must influence at least one stage in
common. Suppose that we have a process in
which RT measurements have revealed two or
more factors with additive effects. This supports
the hypothesis that the process contains subpro-
cesses arranged sequentially, in stages, with each
of the factors selectively influencing a different
subprocess.23 Thus one approach to searching for
the modular decomposition of a complex process
is the method of additive factors (AFM), which
involves determining whether two or more
factors have additive or interacting effects on
mean RT. See Section 7.1 for a discussion of the
strength of such inferences. Example 4.3 illustrates
how it is possible to reveal more complex
processing structures by combining inferences
from a pattern of additive and interacting factor
effects.

4.3. Selectivity of the effect of sleep
deprivation

One of the most provocative applications of the
additive factor method is described by Sanders,
Wijnen, and Van Arkel (1982, Exp. 1), and
leads to the controversial conclusion that the
effect of sleep deprivation is selective (process-
specific) rather than global. What follows is a
simplified description of their experiment and
findings.

This example is especially powerful because it
includes more than two factors. The stimuli were
the single digits “2”, “3”, “4”, and “5”; the responses
were their spoken names, “two”, “three”, “four”,
and “five”. Four factors were manipulated, each
at two levels: The first was Stimulus Quality
(SQ); the digits, presented as dot patterns, could
be intact, or degraded by adding “noise” in the
form of other dots. The second was the Mapping
Familiarity (MF ) from digits to names; it could
either be high (respond to each digit with its
name) or low (respond to “2”, “3”, “4”, and “5”
with “three”, “four”, “five”, and “two”, respect-
ively). The third was Sleep State (SLP), which
was either normal (data taken during the day
after a normal night’s sleep) or deprived (data
taken during the day after a night awake in the
lab). Test sessions occurred in both the morning
and afternoon, creating a fourth two-level factor,
Time of Day (TD). The 24 = 16 conditions were
run in separate blocks of trials. For simplicity the
data shown in Figure 3 have been averaged over
levels of TD. The measure was the RT for trials
with correct responses. Other studies (see
Section 6.4) had already suggested that SQ and
MF were likely to influence two different stages
of processing selectively, stages that might be
described as stimulus encoding (S) and response
selection (R).24

23 Given a constraint on the durations of different stages that is stronger than zero correlation but weaker than stochastic
independence, the assumption of stages plus selective influence implies numerous properties of aspects of the RT distributions in
addition to their means (Sternberg, 1969; Roberts & Sternberg, 1993), such as additive effects on var(RT ). However, without
this constraint, stages plus selective influence don’t require effects on var(RT ) to be additive.

24 The conclusion that SQ and MF influence separately-modifiable sequential processes, or stages, is further strengthened by
analyses of complete RT-distributions (rather than just RT means) from similar experiments (Sternberg, 1969, Sec. V; Roberts
& Sternberg, 1993, Exp. 2).
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Figure 3. Data from Sanders, Wijnen, and Van Arkel (1982, Experiment 1.) Means over the two levels of Time of Day (TD). The three
pairs of panels show the same 2× 2× 2 = 8 data points (unfilled squares, broken lines), plotted differently. Each point is the mean of about
300 RTs from each of 16 subjects. A fitted additive model is also shown in each of the top four panels. Mean absolute deviations of data from
model are 3.3 ms (Panels A1, A2) and 1.0 ms (Panels B1, B2). Because basic data are no longer available, values were obtained from Fig. 1 of
Sanders et al. (1982). For the same reason, neither within-cell nor between-subject measures of variability are available. The+SE bar was
therefore determined by separating the data by TD, fitting a model that assumes the additivity of MF with SQ , SLP, and TD, and using
the deviations (7 df) to estimate SE. The normalized interaction contrasts (see Figure 2 caption) for the six panels are A1: 8%, A2: 11%, B1:
9%; B2: 3%; C1: 88%; C2: 92%. (Fig. 14 of Sternberg, 2001; reprinted by permission.)
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The results in Figure 3 consist of the RT s from
the 2× 2× 2 = 8 conditions. Panels A1 and A2
show that at each level of SLP there are additive
effects of SQ and MF on RT . This evidence
supports:

(1) Performing the task involves at least two
modules, arranged as stages, and

(2) Factors SQ and MF influence no stages in
common.

Panels B1 and B2 show that at each level of SQ
there are additive effects on RT of MF and
SLP. That is, the extra time a subject takes to
execute an unfamiliar S-R association rather than
a well-learned one is invariant over sleep states,
rather than being increased by sleep deprivation.
This evidence lends further support to (1) and
also supports:
(3) Factors SLP and MF influence no stages in

common.
Panels C1 and C2 show that at each level of MF
there are interactive effects of SQ and SLP:
Increasing the level of SLP has a far greater
effect on RT when the stimulus is degraded
(98 ms) than when it is intact (17 ms). That is,
sleep deprivation modulates the effect of the diffi-
culty of stimulus encoding. This evidence supports
(4) Factors SLP and SQ influence at least one

stage in common.

Taken together, the three pieces of evidence
support a theory according to which the process
used to perform the task contains at least two
modules, S and R, these modules are arranged as
stages, and among the factors SQ, MF , and SLP,
SQ and SLP influence S, while MF alone influ-
ences R. It is reasonable to suppose that the stimu-
lus is identified during S, and the response selected
during R. (This is suggested by the nature of the
factors SQ and MF that influence them.) The
AFM has thus led us to the surprising conclusion
that whereas SLP influences stimulus encoding, it
does not influence response selection.

Unlike some other applications of composite
measures, the findings from this experiment not
only demonstrate separate modifiability and
thereby permit us to divide the processes
between stimulus and response into two modules

(here, stages) S and R (the former selectively influ-
enced by SQ, the latter by MF ); they also extend
that analysis, providing an example of localizing
the influence of a third factor SLP in one of the
identified modules, S, thereby further characteriz-
ing S and R. And the additivity of the effects of
SLP and SQ is of course further evidence for the
separate modifiability of S and R.

5. SENSORY AND DECISION
MODULES REVEALED BY
SIGNAL-DETECTION THEORY

Probably the most influential approach to deriv-
ing pure measures of two processes underlying
the performance of a task is the one associated
with signal detection theory, SDT (Swets,
Tanner, & Birdsall, 1961; Macmillan &
Creelman, 2004). At the heart of this approach
is the recognition that even simple psychophysical
tasks involve decision processes as well as sensory
processes. Consider a psychophysical experiment
in which two types of trials are randomly inter-
mixed, each with a slightly different light inten-
sity. On one type of trial, the brighter light, ST
(the target stimulus) is presented; on the other
type, the dimmer light, SNT (the non-target
stimulus) is presented. The observer’s task is to
respond with either RT (“it was the target”) or
RNT (“it was the non-target”). On each trial,
according to SDT, the observer forms a unidi-
mensional internal representation of the stimulus;
let’s call these representations XT and XNT , for ST
and SNT . Because ST is brighter than SNT , XT will
tend to be larger than XNT . It is also assumed,
however, that because of external and internal
noise, XT and XNT are random variables with dis-
tributions, rather than being fixed constants, and
that because ST and SNT are similar, these distri-
butions overlap. It is the overlap that creates the
discrimination problem for the observer.

According to SDT the value of X on a trial
results from the operation of a sensory process S;
this value is then used by a decision process D to
select one of the two responses, selecting RT if
X exceeds a criterion, and selecting RNT

172 COGNITIVE NEUROPSYCHOLOGY, 2011, 28 (3 & 4)

STERNBERG

D
ow

nl
oa

de
d 

by
 [

17
3.

59
.6

6.
15

7]
 a

t 1
7:

52
 1

7 
A

pr
il 

20
12

 



otherwise. The subject’s choice of criterion deter-
mines the direction and magnitude of response
bias.

The data from such an experiment can be
described by four response proportions arranged
in a 2× 2 matrix, where the rows correspond to
the two trial types ST and SNT and the columns
correspond to the two responses RT and RNT .
In the top row are the proportions of the target
(ST ) trials that elicited each response, which
estimate Pr{RT |ST } (the true positive or “hit”
probability), and Pr{RNT |ST } (the false negative
or “miss” probability). In the bottom row are the
proportions of the non-target (SNT ) trials that eli-
cited each response, which estimate Pr{RT |SNT }
(the false positive or “false alarm” probability)
and Pr{RNT |SNT } (the true negative or “correct
rejection” probability). From such a matrix, two
measures can be derived: One is d ′, presumed to
be a pure measure of the sensory process S, and
proportional to XT −XNT , which increases with
discriminability. The other is an estimate of the
criterion, presumed to be a pure measure of the
decision process D.

Many factors have been used in attempts to
influence S and D, some expected to influence
just a sensory process (sensory-specific or s-factors),
and some expected to influence just a decision
process (decision-specific or d-factors). Stimulus
features such as the luminance difference between
ST and SNT are examples of s-factors used to influ-
ence the measure MS = d ′. In studies with human
observers, 2× 2 payoff matrices, containing posi-
tive or negative values associated with the four poss-
ible outcomes on a trial, have been used as a factor
(PM) to influence the response bias associated with
D. Unfortunately, selective influence by PM of D
has not been shown;D also appears to be influenced
by s-factors. However, a few animal studies, includ-
ing the one described below, suggest that response
bias is selectively influenced not by the conditional
probabilities described by the payoff matrix, but
by the distribution of rewards over the two

alternative responses (sometimes described as the
“reinforcement ratio”, RR). RR can be defined as
Pr{RNT |Reward}, the proportion of the total
number of rewards (for both kinds of correct
responses) that are given for RNT .

In a luminance-discrimination experiment with
six pigeons, McCarthy and Davison (1984) used a
linked concurrent pair of variable-interval (VI)
schedules to control RR. On each trial in a series,
one of two light intensities appeared on the centre
key of three keys; these two trial types were
equally frequent. The correct response was to peck
the left key (RT ) if the centre key was “bright,”
and to peck the right key (RNT ) if it was “dim”.
Correct responses were reinforced with food, with
a mean probability of about 0.37, controlled by
the VI schedules. Two factors were varied orthog-
onally: The luminance ratio (LR) of the two lights
was varied by letting the dimmer luminance be
one of five values, including, for the most difficult
LR level, a value equal to the brighter luminance.
The reinforcement ratio (RR), described by
Pr{RNT |Reward}, could be one of three values,
0.2, 0.5, or 0.8.25 There were thus 5× 3 = 15 con-
ditions. For each bird, each condition was tested for
a series of consecutive daily sessions until a stability
requirement was satisfied; the data analyzed came
from the last seven sessions in each condition
(about 1060 trials per condition per bird).

For each condition and each bird, the data can
be summarized by two proportions, Pr{RT |ST }
and Pr{RT |SNT }. If the distributions of XT and
XNT are Gaussian with equal variances, and z(·)
is the z-transform of a proportion (the inverse
Gaussian distribution function), then the
(“ROC”) curve traced out when z(Pr{RT |ST }) is
plotted against z(Pr{RT |SNT }) as RR is changed
from 0.8 to 0.5 to 0.2, is expected to be linear
with unit slope. Examination of the set of thirty
such curves (6 birds × 5 levels of LR) supports
this expectation, and hence the equal-variance
Gaussian model. Given such support for the
model, suitable estimators for the discriminability

25 If Pr{RNT |Reward} = 0.2, for example, for each rewarded RNT response there are four rewarded RT responses, encouraging
a liberal (low) criterion for RT .
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and criterion measures for each condition are

d̂ ′ = z(Pr{RT |ST }) − z(Pr{RT |SNT }), and

ĉ = −[z(Pr{RT |ST }) + z(Pr{RT |SNT })]/2.

The origin for the criterion measure is the
midpoint between XNT and XT ; the sign of the cri-
terion thus expresses the direction of the bias.
Means over birds of these two measures are shown
in Figure 4.

The left side of the figure shows that while the
criterion responds strongly to factor RR (Panel
A1), the often-demonstrated invariance of d ′

with respect to d-factors is also persuasive here
(Panel A2): there is neither a main effect of RR
on d ′, nor is there any modulation by RR of the
effect of LR. The invariance model fits well.
Thus we have evidence for the hypothesis that
while RR is potent, as shown by its influence
on the criterion c (hence onD), it leaves invariant
our measure d ′ of discriminability (and hence of
S). The complementary effects of LR are shown
on the right side of the figure. Panel B2 shows
the orderly effect of LR on d ′; discriminability
ranges widely, from d ′ ≈ 0 to d ′ ≈ 3.6. Panel
B1 shows that to a good approximation the cri-
terion is uninfluenced by LR.

Figure 4.Mean effects of Reinforcement Ratio, RR = Pr{RNT|Reward} (Panels A1, A2) and Luminance Ratio, LR (Panels B1, B2)
on criterion ĉ (Panels A1, B1) and on discriminability d̂′ (Panels A2, B2) are shown by unfilled points and broken lines. RR and LR
levels have been scaled so as to linearize their mean effects on ĉ-value and d̂′-value (Panels A1 and B2). Filled points and unbroken lines
in Panels A2 and B1 represent fitted models in which c and d′ are invariant with respect to factors RR and LR, respectively. The dotted
lines in Panel B1 represent a fitted model with a multiplicative interaction of the two factors (see SM:7.2, SM:15.1), which is not
statistically significant. The +SE error bars reflect estimates of the variability of each plotted point after removing mean differences
between birds. Plotting symbols correspond from top panels to bottom, but not from left to right; the plotted y-values are the same
from left to right. From McCarthy and Davison (1984); basic data kindly provided by B. Alsop. (Fig. 5 of Sternberg, 2001;
reprinted by permission.)
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6. NEURAL PROCESSING
MODULES INFERRED FROM BRAIN
ACTIVATION MAPS

6.1. fMRI signals as pure measures

Suppose there is localization of function (see, e.g.,
Op de Beeck et al., 2008, but also Haxby, 2004),
such that two neural processes a and b are
implemented by different processors Pa and Pb

in non-overlapping brain regions Ra and Rb.
The search for such processes has sometimes
been stimulated by behavioural findings that
support the existence of modular mental processes
A and B that are influenced selectively by factors F
and G. Because of their effectiveness in assessing
the level of activity in localized brain regions,
PET and fMRI are good techniques for such
searches. Then, because process a should be influ-
enced selectively by F , the activation level of
region Ra, a pure measure, should vary with F ,
but not with G, and conversely for region Rb.

26

Thus, the existence of regions whose fMRI
signals are influenced selectively by F and G pro-
vides evidence for modular neural processes that
correspond to the modular mental processes
inferred from the behavioural data. If such
regions were found, it would support the
modular decomposition inferred from the behav-
ioural data, and would also support the conclusion
that the processors that implement A and B are
anatomically localized.

For examples 6.3 and 6.4, it was the modular
decomposition into two processing stages
inferred from RT data that suggested a new
experiment that would incorporate fMRI
measurements to search for corresponding
neural processes. And in both experiments, con-
current RT data were taken, along with the
fMRI data. While the RT data in Ex. 6.3
confirmed earlier findings, results in Ex. 6.4
did not, probably because of paradigm differences,

which raises questions about the fMRI
findings.

6.2. The fMRI signal as a composite
measure

If a and b are implemented by different neural
processors, Pa and Pb (or by the same processor
Pab) in one region, Rab, then the activation
level in Rab is a composite measure that
depends on both a and b. To test separate mod-
ifiability, we must know or show how their con-
tributions to the activation measure are
combined. For example, if the combination rule
is summation (sometimes assumed without justi-
fication) and if factors F and G influence a and b
selectively, then the effects of F and G will be
additive. Finding such additivity in a factorial
experiment would support the combination rule
in that brain region, as well as selective influence.
(If summation were assumed erroneously, selec-
tive influence might be obscured: the effect of
each factor would appear to be modulated by
the level of the other.) Additivity was found in
examples 6.5 and 8.1, both of which used
fMRI adaptation, as well as in the two brain
regions in which it could be tested in Ex. 6.4.
Some of the evidence that bears on the combi-
nation rule for fMRI signals is discussed in
Section 7.2.

6.3. Modular processes in number
comparison

In an experiment by Pinel, Dehaene, Rivière,
and LeBihan (2001), subjects had to classify a
sequence of visually displayed numbers, {k}, as
being greater or less than 65. One factor was
notation (N ): the numbers k could be presented
as Arabic numerals (e.g., “68”) or number names
(e.g., “SOIXANTE-HUIT”). The other was
Numerical Proximity (P), defined as the absolute

26 Such tests require no assumptions about whether a change in factor level causes an increase or decrease in activation. This
contrasts with the assumption, sometimes used to infer modular neural processors (Kanwisher, Downing, Epstein, & Kourtzi,
2001), that stimuli more prototypical of those for which a processor is specialized will produce greater activation.
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difference |k− 65|, and grouped into three
levels. The interesting phenomenon here is the
“symbolic distance effect” (Moyer & Landauer,
1967): the smaller the value of P (the closer the
proximity), the slower the response. A similar

experiment (Dehaene, 1996) had shown additive
effects of N and P on RT ; this was interpreted to
indicate two modular subprocesses arranged as
stages: encoding (E), influenced by N , which
determines the identity of the stimulus and is

Figure 5. Reaction-time and selected brain-activation data from Pinel, Dehaene, Rivière, and LeBihan (2001). The same data are plotted on
the left as functions of P (Proximity, where “high” means closer), withN (Notation) the parameter, and on the right as functions ofN, with P
the parameter. Means over nine subjects of median RTs for correct responses are shown in Panels A, with a fitted additive model.
The three levels of P have been scaled to linearize the main effect of P on RT; this effect, from low to high P, is 159+ 24 ms, while the
main effect of N is 204+ 34 ms. (SEs are based on variability over the nine subjects.) The difference across levels of N between the simple
effects of P from low to high (a measure of interaction) is a negligible 4+ 20 ms. (The SE may be inflated by unanalyzed condition-order
effects.) The normalized interaction contrast (see Figure 2 caption), based on the four corners of the 3× 2 design, is 4%. Mean activation
measures from three sample brain regions, relative to an intertrial baseline, are shown in Panels B, C, and D, accompanied by fitted
null-effect models in Panels B2, C1, and D1. Shown in Panels B1, C1, and D1, the main effects of P (from low to high, using fitted
linear functions) are 0.29+ 0.09% (p ≈ .01), −0.03+ 0.03%, and 0.00+ 0.04%. Shown in Panels B2, C2, and D2, the main effects
of N are −0.06+ 0.06%, −0.16+ 0.05% (p ≈ .01), and −0.15+ 0.05% (p ≈ .02). (Fig. 6.2 of Sternberg, 2004; reprinted by
permission.)
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slower for number names than numbers, and
comparison (C), influenced by P, which uses the
stimulus identity in performing the comparison
and is slower for closer proximities. In the new
experiment, in which fMRI as well as RT measure-
ments were taken, most of the sixteen brain regions
examined whose activation was influenced by N or
by P were influenced significantly by only one of
them, consistent with two separately modifiable
neural processes e and g that are implemented
by separately localized processors. When we
average absolute effect sizes and SEs over the
regions of each type, we find that for the nine
N -sensitive regions the N effect was 0.17+
0.05% (median p-value ¼ .01), while the P effect
was 0.06+ 0.08%; for the seven P-sensitive
regions the P effect was 0.32+ 0.10% (median
p-value ¼ .01), while the N effect was
0.04+ 0.04%.

The fMRI data from three well-behaved
regions are shown in Figure 5, Panels B, C,
and D. The concurrently collected RT data
(Figure 5, Panels A) replicated the earlier
study, suggesting that we associate the neural
modules e and g with the mental modules E
and C; it is important that the mental and
neural modules were selectively influenced by
the same factors. However, while the direction
of the effect of P was the same in all
the brain regions it influenced, the direction
of the effect of N was not: the change from
numeric to verbal notation (which increased
RT ) increased activation in some regions (e.g.,
Figure 5, Panels C) and decreased it in others
(e.g., Figure 5, Panels D).27,28

6.4. Modular processes for stimulus
encoding and response selection

A common finding has emerged from several
studies of choice-reaction time (one of them dis-
cussed in Section 4.3), using various experimental
arrangements and various realizations of the
factors SQ (stimulus quality) and stimulus-
response mapping difficulty (either MF ,
mapping familiarity, orMC, spatial mapping com-
patibility): these studies have shown that stimulus
quality and mapping difficulty have additive effects
on RT , consistent with the idea that there are two
processes, arranged in stages, that are selectively
influenced by these factors. (These studies
include Biederman & Kaplan, 1970, after a
session of practice; Frowein & Sanders, 1978;
Roberts & Sternberg, 1993, Exp. 2; Sanders,
1977, Exp. II; Sanders, 1980, Exp. 3; Sanders,
Wijnen, & Van Arkel, 1982, Exp. I; and
Shwartz, Pomerantz, & Egeth, 1977, Exp. 2.)
The notion is that in initiating a response to a
stimulus, the stimulus must first be identified
(one stage, S) and then, starting with the identity,
the response must be determined (a second
stage, R).

Using a choice-reaction task with their versions
of SQ and MC, Schumacher and D’Esposito
(2002) measured RT and, concurrently, measured
fMRI in six brain regions.29 In their task, the stimu-
lus was a row of four circular patches, one patch
brighter than the others. The response was to press
one of four keys, depending on which of the
patches was the brighter one. The two factors, each
at two levels, were the discriminability of the brighter

27 Without requiring it, this finding invites us to consider that there are two qualitatively different encoding processes 1, one for
each notation, rather than “one” process whose settings depend onN . This possibility is supported by the observation that “the nota-
tion factor affects the circuit where information is processed, not just the intensity of the activity within a fixed circuit” (S. Dehaene,
personal communication, September 29, 2006). If so, we have a case where a change in the level of a factor (here, N ) induces a task
change (one operation replaced by another; see Section 12.1), but evidence for modularity emerges nonetheless: the proximity effect is
invariant across the two tasks. Based on the idea that the processes implemented by different processors are probably different, the
(multidimensional) activation data from such a simple (two-factor) experiment can support a claim of operations replacement. In
contrast, an RT experiment that alone could support such a claim has yet to be devised.

28 Using a dual-task experiment, Sigman and Dehaene (2005) have added to the evidence that distinguishes E from C : E could
occur concurrently with all stages of the initial task, whereas C had to await completion of the “central” stage of the initial task.

29 Extrastriate cortex was expected to respond to SQ; previous studies had implicated the remaining five regions (see Figure 6) in
response selection.
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Figure 6. The six pairs of panels of Figure 6 provide brain activation data relative to a fixation baseline for the six regions measured by Schumacher and D’Esposito (2002). Mean main
effects over nine subjects (eight for anterior cingulate) of Stimulus Discriminability and S-R Mapping in each region, with null effect models shown for each non-significant effect.

178
C
O
G
N
IT

IV
E
N
E
U
R
O
P
S
Y
C
H
O
L
O
G
Y
,
2011,

28
(3

&
4)

S
T
E
R
N
B
E
R
G

D
ow

nl
oa

de
d 

by
 [

17
3.

59
.6

6.
15

7]
 a

t 1
7:

52
 1

7 
A

pr
il 

20
12

 



patch from the others (SQ), and the spatial compat-
ibility of the patch-to-key mapping (MC). Each
subject was tested under all four combinations of
factor levels. Unlike Ex. 6.3, in every region
where a factor had an effect on the fMRI signal,
the “more difficult” level of that factor—the level
that produced the longer RT—also produced
the larger fMRI signal. Figure 6 shows that in
one of the regions, only SQ had a reliable effect
(Panels A), in two of the regions only MC had
reliable effects (Panels B and C), in two regions
both factors had reliable effects (Panels D and
E), and in one region neither factor had a reliable
effect (Panels F). The selective effects found in
three of the regions (where the fMRI signal was
influenced by one of the factors but not the
other) are consistent with S and R being
implemented, at least in part, by anatomically dis-
tinct populations of neurons.30

The additivity found in earlier RT experiments
suggests that there is no process influenced by
both factors. But in two brain regions (Panels D
and E), both factors were found to have effects.
One possibility is that these regions each
contain two specialized populations of neurons,
each of which is influenced selectively by a differ-
ent one of the two factors. If so, the total amount
of neural activity in each of these regions would
be influenced additively by the two factors.
Alternatively, if S and R are sequential, as
suggested by the RT data from the earlier exper-
iments, the same neural processor in the same
region could contribute to the implementation
of both processes, and again it is plausible that

the summed neural activity would be influenced
additively by the two factors. As shown in
Figure 7, Panels A and B, the effects of SQ and
MC on the fMRI signal were remarkably close
to being perfectly additive.

Additive effects on the amount of neural
activity by itself does not imply additive effects
on the fMRI signal; assumptions required for
this implication are discussed in Section 7.2.
Given these assumptions, the additivity of the
effects of SQ andMC on the fMRI signal supports
additivity of their effects on the amount of neural
activity, which in turn supports the idea that sep-
arate processes within the regions shown in
Panels D and E contribute to the implementation
of S and R.

In contrast to the earlier findings with various
experimental arrangements mentioned above,
the effects of the two factors on RT in the
Schumacher-D’Esposito task were unfortunately
not additive; as shown in Figure 7C there was a
reliable interaction: the effect of raising the level
of each factor was greater when the level of the
other factor was higher (an “overadditive” inter-
action); such an interaction was found in the
data for eight of the nine subjects. This finding
seems inconsistent with the fMRI data, all of
which support the idea that no neural process is
influenced by both factors. One possibility is
that there is such a process, but it happens not
to be localized in any of the six regions that
were examined, which suggests that stronger
inferences require sampling more brain
regions.31,32

30 It is noteworthy and requires explanation that in each of the five cases where an effect is not statistically significant, it is none-
theless in the same direction as in those cases where the effect is significant. Is this because the neural populations that implement the
S and R processes are incompletely localized, or because the measured regions don’t correspond to the populations, or for some other
reason?

31 Schumacher and D’Esposito (2002) suggest that such a process might occur only under the stress of a subject’s being in the
scanner, and not under normal conditions. However, RT data from the practice session, outside the scanner, showed a non-signifi-
cant interaction of about the same size and in the same direction. It is also of interest that a whole-brain analysis of the fMRI data did
not reveal any additional task-sensitive regions (E. Schumacher, personal communication, November 27, 2006).

32 There is an unresolved puzzle about these data that suggests that it would be valuable to replicate this experiment, using a
procedure known to produce additive effects on RT . The large SEs associated with the very small mean interaction contrasts for
the data shown in panels 7A and 7B reflect the fact that the variability of the interaction contrast over subjects is quite large—so
large relative to the mean that the reported F-statistics in both cases were 0.00. Indeed, relative to the variability, the reported
mean interaction contrasts were significantly (p , .05) too small.
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6.5. Modular short-term and long-term
memory processes in scene perception

Consider the process used to to recognize a scene
and make a judgement about it. This process is
influenced by the observer’s previous experiences
with the same scene and with other views of the
same place. Epstein, Parker, and Feiler (2008)
asked whether there are different subprocesses
influenced selectively by such previous experiences,
depending on whether the experiences are very
recent (“short-interval”— within 2 sec) or less
recent (“long-interval”—separated by about a half
hour). Students at the University of Pennsylvania
(Penn) saw two series of visual scenes, Series 1

before their brains were scanned, Series 2 while
being scanned. During Series 1, all the scenes
were from Penn, and subjects had to judge which
half of the campus each scene was from.

In Series 2, two scenes were presented succes-
sively on each trial, with onsets separated by 1.2
sec. For two thirds of the trials, both scenes
were from Penn; for the remaining third (whose
data were discarded), one or both scenes were
not from Penn. Subjects had to judge whether
both scenes were from Penn, and make one
speeded manual response to the second scene if
so, the other response if not. Primary interest
was in the RT and in the fMRI signal in the para-
hippocampal place area (PPA) on each trial when

Figure 7. Panels A, B show mean simple effects of the two factors on the brain activation measure, in the two regions where both main effects
were significant in Schumacher and D’Esposito (2002). Also shown are fitted additive models, and the interaction contrasts that measure the
badness of fit of these models. Panel C shows simple effects of the two factors onRT, and the corresponding interaction contrast. The normalized
interaction contrasts (see Figure 2 caption) are A: 4%; B: 1%; C: 25%. (The mean effect ofDiscriminability on RT when theMapping was
easy versus hard is 64 versus 94 ms, respectively.)
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both scenes were from Penn, and how these
measures were influenced by two orthogonal
factors: the short-interval relation: between the
second scene and the first on trials in Series 2,
and the long-interval relation between the
second scene and scenes that had been displayed
during Series 1.

fMRI Adaptation (also called “repetition sup-
pression”; Grill-Spector & Malach, 2001) was
expected both from Series 1 and from the first
scene on each trial in Series 2: To the extent that
a stimulus is similar to one shown earlier, the
neural response to that stimulus is reduced. (One
can also think of recovery from fMRI adaptation
as a novelty effect: to the extent that aspects of a
stimulus to which the measured neurons are
sensitive are novel, their response is greater.33)
Consistent with expectation, the fMRI signal in
the PPA as well as the RT varied with both
short-interval and long-interval relations.
Answering the question whether short- and
long-interval fMRI adaptation in the PPA are
generated by a single process or by two separate
processes therefore requires determining how
their effects on the fMRI signal combine.
Because the RT undoubtedly depends on other
brain regions in addition to the PPA, analysis of
the two measures might lead to different
answers.34

There were three possible short-interval relations
between the first and second scenes on a trial: they
could be identical (second scene ¼ old place, old
view), similar (second scene ¼ old place, new
view), or different (second scene ¼ new place).

Similarly, there were three possible long-interval
relations: the Series 1 scenes could include one that
was identical to the second scene, or one that was
similar, or none that was either identical or similar.
The ingenious design permitted these two kinds of
relation to vary orthogonally. For the analysis pre-
sented here, the data were partitioned so as to separ-
ately examine (1) the view effect: the effect of
increasing novelty by showing a different view of a
previously seen place rather than the same view,
and (2) the place effect: the effect of increasing
novelty by showing a new place rather than repeating
a previously seen place.35 Thus there are two short-
interval factors (Sameness or Difference of View and
Place) and two long-interval factors (Sameness or
Difference of View and Place), each with two levels.
In asking how the effects of short-interval and
long-interval factors combine, we can ask how each
of the two short-interval factors combines with
each of the two long-interval factors, giving us four
separate tests.

Means of the PPA fMRI signal strengths over the
sixteen subjects are shown in Figure 8.36 All four of
the main effects are significant, with p , .01. In
each case the long- and short-interval effects are
remarkably close to being additive. Whereas the
long- and short-interval place effects are similar in
magnitude (Panel B), with the former slightly
greater, the long-interval view effect is substantially
smaller than the short-interval view effect (Panel
A). Indeed, the difference between the long- and
short-intervalmain effects of the view factor is signifi-
cantly greater than the difference between the main
effects of the place factor, with p , .01. In addition

33 The relation between fMRI adaptation and neuronal activity is controversial; see, e.g., Sawamura, Orban, and Vogels (2006),
and Grill-Spector (2006).

34 Suppose that the fMRI analysis leads to the conclusion that the two factors influence separatemodules within the PPA.This would
not preclude their having interactive effects on the mean RT. This could happen, e.g., if the processes that contribute to the RT include
one or more processes, other than the one(s) implemented by the PPA, that are influenced by both factors. Or it could happen if the
processes that contribute to the RT are selectively influenced by the two factors, but are arranged in parallel rather than as stages. On
the other hand, suppose that the fMRI analysis leads to the conclusion that there is a single module influenced by the two factors.
Then, unless the PPA does not play a role in generating the response, additivity of the RT effects of the two factors would be unexpected.

35 In the present analysis of the effects of place change, the data for same place were collapsed over levels of the view factor. This
analysis differs from that of Epstein et al. (2008).

36 These are means of the BOLD signal strengths over the PPA regions in the two hemispheres.
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to its significance level attesting to the remarkably
high precision of these data, this three-way inter-
action supports the idea that the long-interval adapt-
ing effect is more “viewpoint invariant” than the
short-interval effect.37

Means of the RT data are shown in Figure 9.
There is one substantial interaction (in Panel D),
but it is not statistically significant. The additivity
in Panel A should probably not be taken seriously,
because the long-interval view effect is small ( just

Figure 8. Combined effects on the fMRI signal in the parahippocampal place area of two kinds of short-interval and long-interval
novelty, from Epstein, Parker, and Feiler (2008). The normalized interaction contrasts (see Figure 2 caption) are A: 11%; B: 5%;
C: 29%; D: 7%.

37 In a whole-brain analysis, reliable long- and short-interval effects were found in many other brain regions. There was no per-
suasive evidence that any region had just one of these effects. Furthermore, the number of regions in which the interaction of the two
effects was significant (two among 21 tests) can be explained as the result of type I error. Thus, no regions were found that provided
pure measures of either effect, and additional evidence was found of additivity of the two effects on the fMRI signal.
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as in the fMRI data) and not statistically signifi-
cant. As in the fMRI data, lengthening the interval
reduces the view effect more than the place effect
in the RT data; indeed, it reverses the effect in
the RT data. It is interesting to consider whether
the differences between short- and long-interval
effects of view and place changes would alone
argue that the short- and long-interval effects are
generated by different processes. (See the discus-
sion of differential influence in Section 12.4.)

To the extent that summation is a plausible com-
bination rule for effects on fMRI (see Section 7.2),
the additivity of the effects of short-interval and
long-interval factors is consistent with their being
generated by separate modular processes.
However, the fMRI data alone don’t tell us
whether these processes are concurrent (resulting
from the activity of different neural populations in
the same region) or sequential. The fact that no
brain regions were found in which just one
process appears to be operating seems to argue
against their being implemented by different
neural populations. Both of the neurophysiological
accounts suggested by Epstein et al. (2008) are con-
sistent with the processes being sequential. If the
additivity of the RT effects were more persuasive,
we would have evidence for two processes being
arranged as stages. However, as mentioned above,
we don’t know the relation between PPA activity
and the processes that generate the response.
Whatever their temporal arrangement, if two inde-
pendent (modular) processes mediate the effects of
the same experience, depending on how long ago it
occurred, this seems to require separate short- and
long-term memory representations.

7. MODULAR EXPLANATIONS OF
ADDITIVE EFFECTS: HOW STRONG
IS THE INFERENCE?

The inferences from composite measures to
modular processes in Sections 4 and 6 based on
RT and fMRI data have made use of the reasoning
described in Table 2. How persuasive is such reason-
ing? Suppose that we make an observation—of
the additivity of the effects of two factors on

a measure—that is consistent with a theory
according to which the two factors influence a
particular pair of processing modules selectively.
Given the observation, how credible is the theory?
This depends on the plausibility of the theory, the
plausibility of alternative modular theories, and the
plausibility of single-process (i.e., non-modular)
theories that are also consistent with the observation
(Howson & Urbach, 2006).

7.1. Inferences from reaction-time
measurements

Let us first consider the case where the measure is
RT , and where the observation is of the additivity
of the effects of two factors. When the additive-
factor method was first proposed (Sternberg,
1969), there was a highly plausible and historically
significant modular explanation: stages plus
selective influence, with the combination rule
(summation) inherent in the concept of stages.
And there were no well-known plausible alterna-
tives, either modular or non-modular. Since then,
it has been discovered that under some conditions,
other models, quite different in spirit from stage
models, can also generate such additive effects.
(Ashby, 1982; McClelland, 1979; Miller, van der
Ham, & Sanders, 1995; Roberts & Sternberg,
1993). In all these cases, the prediction of means
additivity derives from modularity plus selective
influence; hence, from the viewpoint of discovering
modular processes (but not of how these processes
are arranged in time) the existence of these
alternative possibilities does not weaken the
argument outlined in Table 2. Their discovery,
however, decidedly weakens the inference from
the additivity of factor effects on RT to the organ-
ization in stages of the corresponding processes.
To help distinguish among such modular
alternatives one can sometimes use other aspects of
the RT data (e.g., Roberts & Sternberg, 1993) or
brain measurements. Examples of the use of
brain measurements for this purpose include neuro-
physiological data (see Schall, 2003, and references
therein, and Woodman, Kang, Thompson, &
Schall, 2008) and the pure stage duration measures
in the electrophysiological data of Ex. 3.2. As for
non-modular theories, I know of no plausible way
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in which what is truly a single process can give rise to
additive effects of two factors on mean RT.38 This
could of course change, as we learn more about
mental and neural processes.

7.2. Inferences from fMRI measurements

Suppose that we observe that the effects of two
factors on the fMRI signal in a brain region are
additive. It is tempting to conclude that they

Figure 9. Combined effects on RT of two kinds of short-interval and long-interval novelty, from Epstein, Parker, and Feiler (2008). The
normalized interaction contrasts (see Figure 2 caption) are A: 11%; B: 3%; C: 18%; D: 64%.

38 In the popular diffusion model (e.g., Ratcliff & Smith, 2010), the most natural way in which a factor has its effect is by chan-
ging the rate of evidence accumulation. Additive effects on this rate produce effects on RT that are overadditive.
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influence different neural processes in that region.
To do so, two propositions should be true:

Proposition 1: Summation is the combination rule for their con-
tributions to the BOLD signal (B) of different processes in that
region, either concurrent and implemented by different neural
populations, or successive. (Only then can additivity of effects
support the inference of selective influence.) This requires B
to be linear in the total amount of neural activity in the region.

Proposition 2: Factors that influence the same neural process do
not have additive effects on the amount of neural activity. (If
they did, and B satisfied the linearity requirement, then additive
effects could be produced by factors that influence the same
neural process.) This leads to a requirement of nonlinearity
for neural activity.

To see why these propositions are critical, consider
what is required to correctly conclude in favour of
modular processes in a region, and how we could
be misled.

Different neural populations implement modular
processes. Suppose first that a and b, modular
processes selectively influenced by F and G, are
implemented by two different populations of
neurons in the measured region. Let us write Na =

Na(Fj ) and Nb = Nb(Gk) for the levels of neural
activity in those two populations, and assume that
the fMRI signal, B depends on both Na and Nb,
but possibly to different degrees. Assume further
that B is a linear function of Na and Nb:
B(Na,Nb) = B0 + aNa + bNb, where B0 is a base-
line level, and a and b are nonnegative constants.39

We can then write:

Bjk = B(Fj ,Gk) = B0 + aNa(Fj ) + bNb(Gk). (8)

Because changes in F influence only the second
term, and changes in G influence only the third
term, the effects of Fj and Gk on Bjk must be addi-
tive, whatever the form of the functions Na() and
Nb(). The inferential logic for this case is described
by Table 2, and, as described in that table, the

observation of additivity, as in Exs. 6.4, 6.5, and
8.1, supports the hypothesis that factors F and G
influence different modules selectively, together
with the hypothesis that the contributions to B
of the two populations combine by summation,
which in turn depends on B being linear in the
level of neural activity.

One neural population implements successive
modular processes. Because the fMRI signal reflects
neural activity that occurs over a period of seconds,
if processes a and b, selectively influenced by F
andG, are implemented successively and sufficiently
rapidly by the same population of neurons in the
measured region, they would both contribute to
the fMRI signal. With one proviso,40 even if tem-
poral summation were imperfect (e.g., Dale &
Buckner, 1997), Eq. 8 would apply; the failure of
perfect temporal summation would be reflected
only in the parameters a and b.

Additive effects from a single process. As sum-
marized in Table 2, the observation of additive
effects of two factors F and G supports the joint
hypothesis consisting of H1 and H3. An alterna-
tive explanation for such a finding is that there is a
single process (a) influenced by both factors that
operates in such a way that their effects on
Ma(F ,G) are additive. In evaluating the plausi-
bility of this alternative we need to consider
what would be required of the process for it to
have this property, and how the requirement
could be tested. For this purpose it is helpful to
consider the idea of factor-level strength.
Suppose two factors, F and G, each at two
levels, in a 2× 2 factorial design, and a measure
M = M(F ,G). Associate a factor-level strength,
sf and sg with each level of each factor; let the
strengths for F1, F2, G1, and G2 be q, q + r, u,

39These constants would depend, for example, on the mean proximities of the two populations to the centre of the brain region in
which the fMRI signal is measured, and on the time relation between the two activations.

40 If the duration of either process is changed sufficiently by the change in factor level so that the temporal distribution of neural
activation in the region is altered, additivity could fail. However, the findings in Ex. 6.4 are perhaps reassuring: Despite the fact that
the RT data (Figure 7C) indicated substantial effects on the durations of both processes of interest, the additivity of the fMRI effects
in both of the regions influenced by both factors was remarkably good. Apparently, even these duration changes are small relative to
the sluggishness of B.
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and u+ v, respectively. To make it clear that sf
and sg need to be specified only up to arbitrary
multiplicative constants, we can write, for total
factor-level strength, tFLS = bsf + csg . Then for
the four conditions in the experiment, (F1,G1),
(F1,G2), (F2,G1), and (F2,G2), the total factor-
level strengths are bq + cu, bq + cu+ cv,
bq + br + cu, and bq + br + cu+ cv, respectively.
Subtracting bq + cu, they become 0, cv, br, and
cv+ br, which makes it clear that the factor-level
strengths in the four conditions are additive.
Because the total strength is additive, a necessary
and sufficient condition for the effects of the two
factors on M(F ,G) to be additive is that M is a
linear function of tFLS:

M(F ,G) = M(tFLS) = M(bsf + csg)

= a+ b′sf + c′sg . (9)

To the extent that such linearity is plausible or
valid, it prevents us from confidently inferring
modular processes from additive effects on M .
Applying this reasoning to fMRI, and assuming
that Ba is linear in Na, Ba is linear in tFLS if (and
only if) Na is linear in tFLS: Na(bsf + csg)
= a+ b′sf + c′sg . Thus, only to the extent that the
linearity of N in tFLS is implausible or invalid
does the finding of additivity of factor effects on
B support the hypothesis of modular processes.

In short, to justify the inferences in Exs. 6.5 and
8.1, and those based on the additive effects in two of
the brain regions in Ex. 6.4, we have to believe that
B is (approximately) linear inN , and thatN is non-
linear in tFLS. These requirements appear not to
have been recognized by some investigators.

Evidence for linearity of B(N ) (Proposition 1) and
nonlinearity of N (Proposition 2). The neural basis
of the BOLD response is controversial (e.g.,
Ekstrom, 2010; Logothetis & Wandell, 2004;
Goense & Logothetis, 2008). That B(N ) is linear
has been concluded from comparing the effects of
motion coherence (Rees, Friston, & Koch, 2000)

and contrast (Heeger, Huk, Geisler, & Albrecht,
2000) on B in humans with their effects on the
single-cell spike rate in monkeys. Predictions from
a linear transform model for the effects of certain
visual stimulus variations on B were largely con-
firmed for area V1 in an influential study by
Boynton, Engel, Glover, and Heeger (1996); see
alsoDale andBuckner (1997). The failures of linear-
ity in such studies (such as failures of temporal sum-
mation) generally don’t tell us whether it is B(N ), or
the neural response N , or both, that are nonlinear
(Boynton & Finney, 2003, Miller, Luh, Liu,
Martinez, Obata, et al., 2001; Soltysik, Peck,
White, Crosson, & Briggs, 2004). Generalization is
problematic, because different brain regions may
differ in linearity (Horner & Andrews, 2009;
Soltysik et al., 2004). The authors of a study in
which electrophysiological as well as fMRImeasures
were taken concluded that the source of nonlinearity
inV1 isN , notB(N ) (Wan,Riera, Iwata,Takahashi,
Wakabahyashi, & Kawashima, 2006). However,
Miller et al.’s (2001) finding of a nonlinear relation
between cerebral blood flow and B in primary visual
and motor cortex is hard to explain unless B(N ) is
nonlinear. And Boynton and Finney (2003) con-
cluded that whereas some of the nonlinearity in
higher visual areas is neural, some may be in B(N ).

Evidence, including that mentioned above,
indicates that in response to contrast, duration,
number of stimulus repetitions, and number of
trials, the magnitude of the neural response N
changes nonlinearly (Albrecht, Geisler, & Crane,
2003; Carandini & Heeger, 1994; Geisler &
Albrecht, 1995; Heeger et al., 2000; Li, Miller,
& Desimone, 1993; Meeter, Myers, & Gluck,
2005; Sawamura, Organ, & Vogels, 2006). This
reduces the plausibility of a single neural process
producing additive effects by responding linearly
to tFLS. If we therefore assume that N (tFLS) is
nonlinear, we can conclude from additive effects
of two factors on B in a brain region (as in Exs.
6.4, 6.5, and 8.1) that they influence different
modules selectively.41 Such instances of additive

41 This argument is stronger for Ex. 6.4, where pure measures of each factor were found in three regions: This makes it more
likely that the finding of effects of both factors in two other regions should be explained by those regions containing two populations
of neurons, each responsive to one factor.
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effects on B then provide evidence of the linearity
of B(N ). However, taken together, the available
evidence seems to permit us to treat the linearity
of B(N ) only as a tentative working hypothesis.

8. BRIEF ACCOUNTS OF FOUR
ADDITIONAL EXAMPLES WITH
COMPOSITE MEASURES

8.1. Modular neural processes for
perceptually separable dimensions

We considered an application of fMRI adaptation
in Section 6.5; another example is a study by
Drucker, Kerr, and Aguirre (2009). Suppose a set
of visual stimuli that vary along two dimensions
that are neurally separable, in the sense that they
are evaluated by different modular neural processes
(possibly implemented by different populations of
neurons). Let S1 and S2 be successive stimuli, and
let Fj and Gk be their proximities along the two
dimensions. Then, given Eq. 8, the adapting
effect of S1 on the fMRI response to S2 will be
the sum of the adapting effects on the two pro-
cesses, which in turn will depend additively on
Fj and Gk. In an experiment to test this idea,
Drucker et al. used two different sets of outline
shapes, each varying over several levels of each of
two dimensions. For one stimulus set the two
dimensions were expected to be neurally separable
because they are perceptually separable in the sense
of Garner (1974);42 for the other stimulus set they
were expected to be neurally integral, that is,
evaluated by a single process, because they are
perceptually integral, and were therefore expected
to have adapting effects on the two dimensions
that would interact rather than being additive.43

Applying a single-df global measure of inter-
action to each subject’s data for each stimulus
set, they found results that supported their
hypotheses. Unfortunately, they provided no
breakdown of the multiple separate tests of

additivity that their data permit, no comparison
of measures of interaction with corresponding
main effects, and no way to be sure that the
global measure in the additive case was not the
resultant of multiple interaction contrasts of oppo-
site sign. (Their test is analogous to representing
all the information about the combination of
effects in Figure 8 as a single number.) One
appeal of this study is that the same experimental
and analytic methods and the same subjects
revealed contrasting fMRI effects, additive and
interactive, for the two sets of stimuli. Another
appeal is that the results support an attractive
neural theory of perceptual integrality and
separability.

8.2. Evidence for modular spatial-
frequency analyzers from the detectability of
compound gratings

Consider a task in which a subject says “yes” when
either or both of two detection processes respond,
and says “no” if neither process responds. (For the
present discussion we ignore the complication
introduced by “guessed” yes responses that may
occur when neither process responds.) If the behav-
iour of the two processes is uncorrelated, then the
probability of neither process responding is the
product of the individual nonresponse probabilities
for the two processes. Pr{“no”} is thus a composite
measure of the two detection processes, with a
multiplicative combination rule; this relationship
is sometimes called “probability summation”.

To describe the consequences of a multiplica-
tive combination rule for a composite measure, it
is helpful to introduce the idea of a proportional
effect, or p.effect. We saw in Section 2.2 that the
effect of a factor on a measure is defined as a differ-
ence (for a factor with two levels), as in Eq. 1, or
can be defined as a vector of differences (for a
factor with multiple levels). Similarly, the p.effect
of a factor on a measure MA is defined as a ratio

42 For two perceptually separable (integral) dimensions, variation in one does not (does) interfere with making decisions based on
the other, and perceptual distances obey a city-block (Euclidean) metric. See also, e.g., Ashby and Maddox (1994).

43 While viewing each sequence of shapes, subjects reported on the position of a bisecting line.
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(for a factor with two levels):

p.effect(F ) =
MA(F2)

MA(F1)
, (10)

or a vector of ratios (for a factor with multiple
levels). Suppose we have a composite measure
with a multiplicative combination rule:

MAB(Fj ,Gk) = u(Fj ) × v(Gk). (11)

To derive the equivalent of Eq. 3 from Eq. 11
requires us to assume that the contributions u
and v from processes A and B to MAB are

uncorrelated.44 In that case, it follows from
Eq. 11 that

MAB(Fj ,Gk) = �u(Fj ) × �v(Gk), (12)

and, by analogy to Eq. 4, that

p.effect(F ,G) = p.effect(F ) × p.effect(G). (13)

If the p.effects of the factors are multiplicative, as
in Eq. 13, this supports the joint hypothesis that
processes A and B are separately modifiable,
that their contributions toMAB combine by multi-
plication, and that their contributions are uncorre-
lated. The inferential logic in this case is outlined
in Table 3.45

Table 3. Inferential logic for a composite measure with multiplication as the combination rule

Joint Hypothesis

H1: Processes A and B are modules (separately modifiable).
H4: Contributions uA , vB of A, B to MAB(A, B) combine by multiplication.
H5: Contributions of A and B to MAB are uncorrelated.

Prediction

We may be able to find factors F and G that influence A and B selectively:

p′1:uA � F , p′2:vB �/ F , p′3:vB � G, p′4:uA �/ G,

and jointly influence no other process.
If so, their proportional effects on MAB will be multiplicative.

Alternative Results

We find factors F and G with
multiplicative p.effects on MAB.

We fail to find such factors.

Corresponding Inferences

Support for joint hypothesis
H1 + H4 + H5.

Refutes one/more of H1, H4, H5,
or we didn’t look enough for F, G.

44 This is a weaker requirement than stochastic independence, but may nonetheless be important.
45 Adapted from Table 4 of Sternberg (2001) by permission.
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This observation was exploited in a famous
experiment in which the detectors were hypoth-
esized spatial-frequency analyzers sensitive to
different frequency bands. Sachs, Nachmias, and
Robson (1971) independently varied the contrasts
(F , G) of two widely separated frequencies that
comprised a compound grating whose presence
subjects had to detect. They found that reducing
the contrast of one of the frequencies in the
compound caused Pr{non-detect} to increase by a
constant factor, consistent with Eq. 13, thus
supporting the joint hypothesis. This model
failed badly when the component spatial fre-
quencies in the compound were closer together.
These findings provided important early evidence
formodular analyzers for separated spatial frequen-
cies and for the multiplicative combination rule.46

One reasonwhy this experiment was especially per-
suasive is that whereas one of the two gratings was
either present or absent, the contrast of the other
grating was varied over more than two levels.

More formally, let S1 and S2 represent the
behaviour of the two modular subprocesses, here
detection processes, with Sj = 1 indicating
success (detection) and Sj = 0 otherwise, and
assume that S1 and S2 are independent. In the
present case, the combined process is successful (a
“yes” response) if either of its subprocesses is suc-
cessful. Under these conditions, it is the probability
of nonsuccess (“nondetect”) that is related to the sub-
processes by a multiplicative combination rule:

Pr{nonsuccess} = Pr{S1 = 0 and S2 = 0}

= Pr{S1 = 0} × Pr{S2 = 0}. (14)

Shaw (1980) showed that Eq. 14 was a
consequence of the attention-sharing version of
an independent decisions model, and Mulligan
and Shaw (1980) found that Eq. 13 (and neither
of two alternative models) described the behaviour
of three of their four observers detecting simul-
taneous auditory and visual signals in a 2× 2

experiment in which each signal was either
present or absent.

8.3. Modules inferred from multiplicative
effects on the accuracy of lexical decisions

In contrast, suppose a situation in which the
combined process is successful if and only if both
of its independent subprocesses are successful.
(This could occur if the output of the first is the
input of the second.) It is then the probability
of success that is related to the subprocesses by a
multiplicative combination rule:

Pr{success} = Pr{S1 = 1 and S2 = 1}

= Pr{S1 = 1} × Pr{S2 = 1}. (15)

Equations 14 and 15 generalize, in the obvious way,
to complex processes in which more than two
(mutually independent) subprocesses are manipu-
lated. One note of caution: If effects are additive
within each of several subsets of the data (such as
data fromdifferent subjects), theywill also be additive
in themeandata. (Additivity is preservedby the arith-
metic mean.) However, if effects are multiplicative
within data subsets, and are averaged using ordinary
means (rather than geometric means, or arithmetic
means after a logarithmic transformation), effects in
themean data may deviate from beingmultiplicative.
(Multiplicative relationship may not be preserved
by the arithmetic mean.) Pooling data from
different subjects or from different levels of practice
is also likely to induce correlation. Hence,
when effects might be multiplicative, the units of
analysis should be homogeneous subsets of the data,
and experiments should be run so as to provide
stability.47

In an important paper, Schweickert (1985)
showed that effects of factors on Pr{correct} in
three diverse experiments satisfy a multiplicative
combination rule. For example, one of the data sets
(Schuberth, Spoehr, & Lane, 1981, Exp. 2) are the
accuracies of the lexical decision process in a

46 See SM:13 and SM:A.13 for more details.
47 Numerical experiments show that under some plausible conditions, Eq. 12 is well approximated even when the contributions u

and v to MAB are highly correlated.
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speeded taskwith orthogonal variation of three two-
level factors: legibility of the test word, frequency of
the word in English, and semantic congruity of the
word with a sentence context. Schweickert found
that a multiplicative combination rule is consistent
with the effects of these factors on Pr{correct}, sup-
porting theories in which the three factors influence
three different mutually independent modular pro-
cesses, all of which must succeed for a correct
response. Because the error rate in these data never
exceeded 8%, a multiplicative model for Pr{correct}
is virtually indistinguishable from an additive
model for Pr{correct}, as Schweickert noted (which
is equivalent to an additive model for Pr{error});
the mean absolute difference between fitted values
of percent correct for multiplicative and additive
models is a negligible 0.02%. This is a problem for
inference only if a plausible additive model is avail-
able, which at this writing it appears not to be. For
precise tests of models for Pr{correct}, more data
are needed than in the Schuberth et al. experiment.
For these data, with 672 observations per condition,
the SEs of the mean Pr{correct} for the eight con-
ditions are large (0.3% to 1.0%), given the small
main effects of 1.6%, 2.3%, and 2.9%.

8.4. Evidence from ERP amplitude for
modular processes in semantic classification

At any particular time, the ERP at any point on the
scalp is a composite measure of all the neural pro-
cessors (“sources”) in the brain that are active at
that time. Furthermore, the physics of volume con-
duction tells us that the combination rule is sum-
mation.48 Hence, unlike most other cases, the
combination rule is not a part of the hypothesis
that must be tested. Suppose there are two modular
neural processesa andb, implemented by processors
Pa andPb, and influenced selectively by factorsF and
G. It follows that the effects of F andG on the ERP
amplitude will be additive at all scalp locations.
Furthermore, if Pa and Pb are at different locations
in the brain, the topographies of the effects of F

and G (the way the effect sizes vary with location
on the scalp) will differ. Because of the simplicity of
the hypothesis and the richness of the possible
tests, as well as the fine temporal resolution of the
ERP, this approach is especially powerful.

Kounios (2007) exploited these properties in a
studyof the effects of primingon the semantic classi-
fication of a sequence of spoken nouns. Most of the
words required no response, while 5% were targets
(names of body parts) that called for a manual
response. The words consisted of primes and probes.
The factors (two levels each) were the Semantic
Relatedness (REL) of the probe to the preceding
prime, and the Semantic Satiation (SAT ) of that
prime (number of immediate repetitions of the
prime before the probe). The data were the ERPs
elicited by the non-target probes at several locations
on the scalp. A composite measure Mab is defined
for each location as the mean ERP amplitude at
that location during the epoch from 600 to 800 ms
after probe onset. Consider the following theory,
with three components:

H1 (Subprocesses): The complex process of recognizing the
probe as a non-target contains (at least) two subprocesses, a
and b, carried out by different neural processors, Pa and Pb.

H2 (Selective Influence): a and b are selectively influenced by
SAT and REL, respectively.

H3 (Combination Rule): Each process is an ERP source; physics
tells us that at any location the combination rule for sources is
summation.

This theory implies that the effects of SAT and
REL on Mab will be additive at all scalp locations.
Kounios found such additivity: The mean main
effects of REL and SAT were 1.3+ 0.2mV and
2.1+ 0.4mV, respectively, while the mean inter-
action contrast was 0.01+ 0.3mV, making the
normalized interaction contrast (see Figure 2
caption) 0.6% (n = 36). This finding supports
the above theory and hence the modularity of a
and b during the 600 to 800 ms epoch.49 Also,
the topographies of the two effects (their relative
sizes across locations) differ markedly, indicating
different locations in the brain for Pa and Pb,

48 This follows from the electrical linearity of brain tissue (Nunez & Srinivasan, 2006, Ch. 1.5).
49 Support for the theory is support for all of its three components. However, because the combination rule is given by physics in

this application, there is no need to test component H3.
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which adds to the evidence against a single-process
explanation.50

9. PROCESS DECOMPOSITION
VERSUS TASK COMPARISON

The applications above exemplify a process-
decomposition approach whose goal is to divide
the complex process by which a particular task is
accomplished into modular subprocesses. The
factor manipulations are not intended to produce
“qualitative” changes in the complex process (such
as adding new operations, or replacing one operation
by another), which may be associated with a change
in the task, just “quantitative” ones. The task-
comparison method is a more popular approach to
understanding the structure of complex processes.
Here one determines the influence of factors on per-
formance in different tasks, rather than on different
parts of the complex process used to carry out one
task. The data pattern of interest is the selective
influence of factors on tasks, i.e., the single and
double dissociation (Schmidt & Vorberg, 2006) of
tasks. (A classical factor used in brain studies is
the amount, usually presence versus absence, of
damage in a particular region, which may affect
performance in some tasks and not others; see
Section 11.) Although it may achieve other goals,
task comparison is inferior to process decomposition
for discovering the modular subprocesses of a
complex process or for investigating their properties:
The interpretation usually requires assuming a
theory of the complex process in each task, and the
method includes no test of such theories. In contrast,
process decomposition requires a theory of only
one task, and, as illustrated by the examples above,
incorporates a test of that theory.51

9.1. Comparison of two tactile perception
tasks

Anelegant example of task comparison, but one that
is subject to its usual limitations, is provided by
Merabet, Thut, Murray, Andrews, Hsiao, and
Pascual-Leone (2004) in their experiment on the
effects of repetitive transcranial magnetic stimu-
lation (rTMS) of different brain regions on subjec-
tive numerical scaling of two tactile perceptual
dimensions. Both tasks involved palpation by the
fingers of one hand of a set of tactile dot arrays
with varying dot spacings. The judged dimensions
were roughness (r) in one task, and distance
between dots (d ) in the other. Where rTMS had
an effect, it reduced the sensitivity of the obtained
scale values to the differences among dot arrays.
One measure of relative sensitivity is the slope, b,
of the linear regression of post-rTMS scale values
on non-rTMS scale values. If there were no effect
we would have b = 1.0; if there is an effect, the
value of b is reduced, so the effect of rTMS can be
measured by 1− b. Means over the 11 subjects indi-
cate that performance in the roughness-judgement
task is influenced by rTMSs of the contralateral
somatosensory cortex (1− brs = 0.21+ 0.07;
p = .02), but negligibly by rTMSo of the contralat-
eral occipital cortex (1− bro = 0.02+ 0.03), while
performance in the distance-judgement task is influ-
enced by rTMSo (1− bdo = 0.16+ 0.07; p = .04),
but negligibly by rTMSs (1− bds = 0.05+ 0.04), a
double dissociation of the two tasks.52

Plausible theories might include, for each
task, processes for control of stimulus palpation
(a), for generation of a complex percept (b), for
extraction of the desired dimension (g), and for
conversion of its value into a numerical response
(d). Any or all of these processes might differ
between tasks. The striking findings indicate

50 In this application, modularity appears to change over time: During an earlier epoch (400 to 600 ms after probe onset) the two
effects interacted substantially, while their topographies changed little from one epoch to the next. See SM:14 for more details.

51 See SM:A.1.
52 Subscripts d and r refer to the two tasks; subscripts s and o refer to the two stimulated brain regions. SEs are based on between-

subject variability. Also supporting the claim of double dissociation, the differences bro − brs and bds − bdo are significantly greater than
zero, with p = .01 and p = .04, respectively. However, because non-rTMSmeasurements were made only before rTMS, rather than
being balanced over practice, straightforward interpretation of the slope values requires us to assume negligible effects of practice on
those values.
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that one or more of these processes in the
two tasks depend on different regions of the
cortex. In addition to specifying these four pro-
cesses, a weak pair of task theories might also
assert that gd and gr depend on occipital and
somatosensory cortex, respectively. However, if
nothing is said about the other processes, this
would be insufficient to predict the results. A
stronger pair of task theories might add the
assumptions that ad = ar = a are identical,
that bd = br = b are identical, and that dd =

dr = d are identical. This pair of theories
would predict the results, which, together with
the absence of effects in two of the conditions,
would then also imply that none of processes a,
b, or d is sensitive to either rTMSs or rTMSo;
this in turn would suggest that they are
implemented by processors in neither of the
stimulated regions. Unfortunately, the findings
do not bear on the validity of such hypothesized
task theories, weak or strong, or even on the
question whether the operations in either task
can be decomposed into modular subprocesses
such as a, b,g, and d; inferential limitations
such as these characterize the task-comparison
method.

9.2. Donders’ subtraction method: Task
comparison with a composite measure

Perhaps the most venerable version of the task-
comparison method is Donders’ subtraction method

(Donders, 1868/1969; Sternberg, 1998b, Appendix
2) for two tasks with measures M1 = RT 1

and M2 = RT 2. The joint hypothesis consists,
first, of a pair of task theories that specify the
constituent processes of each task, and second, a com-
bination rule:

H1 (Task Theory 1): Task 1 is accomplished by process A
(which may consist of more than one modular subprocess).

H2 (Task Theory 2): Task 2 is accomplished by processesA and
B, where A is identical, at least in duration, to the correspond-
ing process in Task 1. (That is, addition of B satisfies a “pure
insertion” assumption.)

H3 (Combination Rule): Contributions u = TA of A and v =

TB of B to M2 = RT 2 combine by summation, as in Table 2,
and as implied by Donders’ assumption that A and B occur
sequentially, as stages.

Given these hypotheses, it follows thatM1 = RT 1

is an estimate T̂A of the mean duration ofA,M2 =

RT 2 is an estimate T̂A + T̂B of the sum of the
mean durations of A and B, and therefore, by sub-
traction, T̂B = RT 2 −RT 1 provides an estimate
of the mean duration of B. It is a serious limitation
of the subtraction method that it usually embodies
a test neither of the combination rule nor of pure
insertion. That is, H2 and H3 are assumed but
not tested.53,54 However, if these hypotheses are
correct, then T̂A and T̂B are pure measures of pro-
cesses A and B. One way to test the hypotheses is
to find factors that influence the two measures
selectively.55 Another way to test them is to
extend them by finding Tasks 3 and 4 that
satisfy H4 (Task 3 is accomplished by A and C)

53 Tasks in which the number of iterations of the same process can be controlled, as in some search tasks, provide a special case of
the subtraction method in which it is easier to validate the required assumptions. If the numbers of iterations in three variations of the
same task are n1, n2, and n3, the test is the linearity of RT (nj ); the slope of the function is an estimate of the duration of the iterated
process.

54 Tests of the invariance of the response process across tasks are provided by Ulrich, Mattes, and Miller (1999).
55 The test would require finding factors F and G such that in a factorial experiment using Task 1 there would be an effect of F

but not of G, and in a factorial experiment using Task 2 the effect of F would be equal to its effect in Task 1, and be additive with the
effect of G. The inclusion of Task 1 in such a study could add to what was learned from Task 2: it would test the pure insertion
assumption as well as permitting estimation of T̂A and T̂B, rather than just of the effects on these quantities. For example, if we
define the Smulders et al. (1995) experiment discussed in Section 3.2 and 4.1 as Task 2 (analogous to Donders “b”), with target
stimuli for the left and right hand, one could add a Task 1 (analogous to Donders “c”) in which the subject would respond with
a single keystroke with the right hand if the right-hand target appeared, and make no response otherwise. One test of pure insertion
would be to determine whether the effect of SQ on RT in Task 1 was equal to its effect on RT in Task 2.
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and H5 (Task 4 is accomplished by A, B, and C),
and to include C in H3. The extended set of
hypotheses can then be tested by confirming its
prediction that RT 4 −RT 3 = RT 2 −RT 1.

56

An analog of Donders’ method, sometimes
called “cognitive subtraction”, has frequently
been used with brain activation measures (e.g.,
Petersen, Fox, Posner, Minton, & Raichle, 1988;
Cabeza & Nyberg, 1997; Lie, Specht, Marshall,
& Fink, 2006; Poldrack, 2010). If localization of
function were perfect, and if one could design
pairs of tasks that were accomplished by processes
such as those required by Task 1 and 2 above, dif-
fering by just the inclusion of one known subpro-
cess, B, then brain mapping would benefit greatly
from the resulting sets of pure measures.
Unfortunately, neither of these requirements is
typically satisfied. The method has been criticized
(Friston, Price, Fletcher, Moore, Frackowiak, &
Dolan, 1996; Sartori & Umiltà, 2000), and
alternatives proposed (e.g., Friston et al., 1996;
Price & Friston, 1997; Price, Moore, & Friston,
1997), but the alternatives usually also depend on
task comparison with unverified task theories, as
has been recognized (Caplan & Moo, 2004;
Sartori & Umiltà, 2000). Even some critics of
“cognitive subtraction” in brain imaging rely on
task comparison with unverified task theories
(Jennings, McIntosh, Kapur, Tulving, & Houle,
1997; Sidtis, Strother, Anderson, & Rottenberg,
1999).57

9.3. Finding the “mechanism of action” of a
manipulation

It was in the context of the evidence for stages
selectively influenced by SQ and MF that the
interaction of SLP with SQ and its additivity

with MF was interpreted in Ex. 4.3. The impli-
cation—that sleep deprivation has effects that are
process-specific—contradicts the conclusions of
others. For example, according to Dinges and
Kribbs (1991, p. 117), there is “a generalized
effect of sleepiness on all cognitive functioning”,
and according to Balkin, Rupp, Picchioni, and
Wesensten (2008, p. 654), sleep loss “impairs
some essential capacity that is basic to cognitive
performance in general”. (See also Lim and
Dinges, 2010.) They based their conclusion not
on the process-decomposition approach (which
would lead to asking how sleep deprivation
modulates the effects of process-specific factors),
but on the finding, from dozens of studies using
task comparison, that sleep deprivation impairs
performance in a wide range of tasks. If they
were correct, SLP should influence both S
and R. Increasing the level of SLP should
therefore exacerbate both kinds of difficulty:
SLP should interact with both SQ and MF by
amplifying the effects of both, contrary to what
Sanders et al. found.58 The problem for the task-
comparison method in this application is perhaps
the high likelihood that all tasks in which per-
formance can be measured involve some perceptual
operations, i.e., processes akin to S.

Process decomposition might be more fruitful
than task-comparison also in investigating the
mechanism of action of different drugs, for
similar reasons: Even if a drug influences processes
in class A and not in class B for many classes A
and B, it may be difficult to find any task that
does not involve processes in both classes. This
may be why, for example, in a study that used
task comparison to determine which processes
are affected by clonidine versus temazepam
(known to have different pharmacological

56 This use of two related pairs of tasks is similar to the “cognitive conjunction” method for brain activation experiments intro-
duced by Price and Friston (1997), except that they appear to have proposed no analogous test.

57 An alternative approach (sometimes called “parametric design”) is exemplified by variation of attentional load over six levels by
Culham, Cavanagh, and Kanwisher (2001), the use of the same working-memory task with five retention intervals by Haxby,
Ungerleider, Horwitz, Rapoport, and Grady (1995), and the use of a different working memory task with four sizes of memory
load by Braver, Cohen, Nystrom, Jonides, Smith, and Noll (1997).

58 Electrophysiological evidence that confirms the selectivity of the effect of SLP has been found by Humphrey, Kramer, and
Stanny (1994).
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mechanisms) in which 11 tasks were used, each
drug produced statistically significant effects on
all except one of the tasks (Tiplady, Bowness,
Stien, & Drummond, 2005). The process-
decomposition approach might be more helpful.
Suppose, for example, that processes A and B in
a task are known to be selectively influenced
by factors F and G, respectively. Now suppose
that processes A and B were also selectively influ-
enced by Drugs 1 and 2, respectively. Then,
whereas both drugs would affect task performance,
the effect of F on that performance would be
modulated only by Drug 1 and the effect of G
only by Drug 2.

10. TRANSCRANIAL MAGNETIC
STIMULATION (TMS) AND THE
SEARCH FOR MODULES

10.1. An ideal experiment

It was recently discovered that even a single pulse
of TMS at certain times and in some brain regions
can prolong the RT in some tasks without redu-
cing accuracy very much (Walsh & Pascual-
Leone, 2003). Repetitive TMS (rTMS) either
before or during performance of a task has pro-
duced similar results. This opens the intriguing
possibility of employing TMS within the method
of additive factors, just as sleep deprivation was
used in Ex. 4.3.59 By using TMS of a region R
(TMSR) in a factorial experiment, while varying

the levels of other factors that are believed to influ-
ence different processing stages selectively, and
determining which effects of the other factors on
RT are modulated by TMSR, it may be possible
to learn whether R is involved in the implemen-
tation of any of those processing stages. For
example, suppose there is a task in which we find
that factors F and G have additive effects on
RT , from which we infer separate stages, A (influ-
enced by F ) and B (influenced by G). Now we add
TMSR as a third factor, and ask whether it inter-
acts with F or G or neither. In the ideal results
of such an experiment, TMSR would (1) have an
effect on RT, (2) interact with (modulate the
effect of) one of the other factors, say, G, and (3)
not interact with (have an effect that was additive
with) the effect of the other factor, say, F . We
would then have evidence that region R is involved
in the implementation of B, but not of A. The
selectivity of the effect would strengthen the infer-
ences made without TMS about the existence of
modular processes A and B, and would also associ-
ate region R with one process (B) and not the
other.60

At this writing there appear to have been no
satisfactory experiments of this kind. The
primary outcome of many TMS experiments has
been to associate a brain region with a task
rather than with a subprocess; the goals have not
included using TMS as a tool for process
decomposition, even when doing so would not
require a larger experiment. Although the
examples below include ones where TMS is

59An important advantage of TMS over measures of brain activation (Section 6) in determining which brain regions are involved
in implementing a process is that whereas activation of a region in conjunction with process occurrence does not mean that such
activation is necessary for that process, interference with a process by stimulation of a region is better evidence for that region
being necessary for the process to occur normally, just as does interference by a lesion in that region (Chatterjee, 2005).
However, it needs to be kept in mind that the mechanism of TMS action is controversial (Harris, Clifford, & Miniussi, 2008;
Johnson, Hamidi, & Postle, 2010; Miniussi, Ruzzoli, & Walsh, 2010; Siebner, Hartwigsen, Kassuba, & Rothwell, 2009).

60 If the effect of TMSR is time specific, as is likely with single-pulse TMS or a burst of rTMS after the trial starts (“on-line”
TMS), the interpretation of its interactions with other factors may not be straightforward. Thus, in the present example, suppose
that it is region R that implements process B, and that B follows A. Because effects on the duration of A influence the starting
time of B, and hence the time of TMS relative to B, a change in the level of F might modulate the effect of TMSR on B, and
hence its effect on RT . The resulting interaction of TMSR with F would lead to the erroneous conclusion that region R is involved
in the implementation of A. This argues for using rTMS before the task is performed (“off-line” TMS) in such studies, rather than
using one or more TMS pulses during the task. When doing so, note that the cognitive aftereffects of TMS are short-lived and plau-
sibly decline over time, which suggests that tests should be balanced in small blocks and that, to reduce error variance, trends over
trials should be estimated and corrected.

194 COGNITIVE NEUROPSYCHOLOGY, 2011, 28 (3 & 4)

STERNBERG

D
ow

nl
oa

de
d 

by
 [

17
3.

59
.6

6.
15

7]
 a

t 1
7:

52
 1

7 
A

pr
il 

20
12

 



shown to modulate effects generated by interesting
processes, and hence to influence those processes,
its influence has not been shown to be selective.

10.2. Visual search and parietal TMS

In visual search for a conjunction of features, it is
usually observed that the RT for both present
and absent responses increases approximately lin-
early with the number of elements to be searched
(the Display Size, DS), suggesting a process of
serial (or capacity-limited parallel) comparison of
the search target with the displayed elements. If
a linear function is fitted to such data, the slope
of the function is sometimes interpreted to
reflect the time per comparison, while the inter-
cept reflects the summed durations of residual pro-
cesses whose durations are not influenced byDS.61

In search for a single feature, unlike search for a
feature conjunction, RT may increase very little
or not at all with DS, and the intercepts may also
differ from those for conjunction search. Thus,
feature and conjunction search appear to differ in
residual processes as well as in the comparison
process. The subprocess of most interest is the
comparison process, whose measure is the slope
of the function RT (DS) that relates RT to DS.
To determine whether TMS influences the com-
parison process in conjunction search we need
to discover whether it modulates the effect of
DS—i.e., changes the slope of RT (DS). If TMS
interferes with the comparison process, what
effect would we expect? If the process is one of
serial comparison, the time per comparison and
hence the slope of RT (DS) function should
increase. If the process is limited-capacity parallel,
the capacity should decrease, which would also
increase the slope.

In one of the first studies using TMS to investi-
gate visual search, Ashbridge, Walsh, and Cowey
(1997) examined the effect of single-pulse TMS
of the right parietal cortex during feature and con-
junction search. In a preliminary experiment in
which TMS was not used but DS was varied,
along with Search Type (feature versus conjunction),
their observations conformed to the description
above. However, in the experiment in which they
applied TMS, they studied only one level of DS.62

They found TMS to interact with search type,
having an effect on conjunction search but not on
feature search. However, they missed an opportu-
nity: If they had varied DS, thus obtaining a
measure of its effect (the slope of RT (DS)) with
and without TMS, their findings could tell us
whether TMS produces its effect on conjunction
search by influencing the comparison process, the
residual processes, or both. Without varying DS,
we do not know which subprocess is responsible
for the effect of parietal TMS on conjunction search.

There may be several differences between the
complex processes that underlie conjunction search
and feature search. Thus, while finding that TMS
influences one type of search but not the other is
probably telling us something important, it is not
clear which difference between processes is respon-
sible. Because theories for the two tasks are not
detailed enough to specify exactly how the associ-
ated complex processes differ, interpretation of the
differential effects of parietal TMS on performance
of the two tasks (and the inference, from this, of the
role of parietal cortex in the comparison process in
conjunction search) requires speculation.

Unfortunately, among 15 later attempts to deter-
mine the effects ofTMSonRTs in visual search pub-
lished during the past dozen years, DS was varied in
only two, those by Ellison, Rushworth, and Walsh

61 Which intercept is appropriate depends on details of the search process, and may differ for target-absent and target-present
trials.

62 O’Shea, Muggleton, Cowey, andWalsh (2006, p. 948) say that “a single set size was used because adding a set size doubles the
number of trials . . . ”. This reason is valid if a specified level of precision is desired for the effect of TMSR for each level ofDS, but not
if the goal is to achieve a specified level of precision for the main effect of TMSR, unless variability accelerates with DS. (But in their
data, both SD and SD2 decelerate with DS.) Thus, if one runs 50 TMS trials each with DS = 4 and DS = 12, instead of 100 trials
withDS = 8 (and likewise for the non-TMS control condition), the precision of the estimated main effect of TMSR (which depends
on the means over DS levels) would be about the same, and, at minimal added cost one would also have an estimate of the effect of
DS, and therefore an estimate of the extent to which TMS modulates that effect.
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(2003, Exp. 3) and Rosenthal, Walsh, Mannan,
Anderson, Hawken, and Kennard (2006). In both
studies, rTMS of the right posterior parietal cortex
starting with presentation of the search array was
found to increase the slope of RT (DS).63 More
studies in this promising direction are needed.

10.3. Number comparison and rTMS of
the angular gyrus

In Ex. 6.3 subjects had to classify numbers as being
greater or less than 65. RT measurements, supported
by fMRI data, indicated that performance in this
task depends on (at least) two processing stages, one
(encoding, E, influenced by Notation, N ) to derive
the identity of the comparison stimulus, and the
other (comparison, C, influenced by numerical
Proximity,P) tocompare thederived identity to thecri-
terion.The processing stage of particular interest,C, is
thatwhich produces the effect ofP: slower responding
for stimulus numbers that are closer to the criterion. In
a pioneering study, Goebel, Walsh, and Rushworth
(2001) found that brief rTMS applied to the left or
right angular gyrus influences the RTs in such a task.
Dotheseeffectsmeanthat theangulargyrus is involved
in implementingC?Alternatively, itmightbe involved
in some other process that contributes to the RT, such
as E. They varied two other factors in addition to
TMSR: the magnitude and the sign of the difference
between the stimulus number and the criterion.
Measures to assess the effect of P could be the slopes
of the (approximately linear) functions for positive
and negative differences (k . 65 and k , 65) that
relate RT to the difference, |k− 65|. To determine
whether TMSR influences C, we need to know
whether it changes either or both of these slopes.
Effects of TMSR on the heights of these functions
might reflect its influence on E or on other processes.

In principle, the data to answer this question
were collected in this study. But focused tests
of the effects of TMSR on the relevant slopes

were not conducted. We thus have a case
where the design of the experiment seems ideal
for examining whether and how rTMS modu-
lates the proximity effect, which might indicate
an effect on C, but the appropriate analysis was
not reported.

10.4. Number comparison and rTMS of
the intraparietal sulcus

Cappelletti, Barth, Fregni, Spelke, and Pascual-
Leone (2007, Exp. 1) recognized the importance,
for evaluating the relevance of a brain region to
C, of determining whether TMSR modulates
the effect of numerical proximity. Using the
same task as in Ex. 6.3, but with Arabic
numerals only, they found that relative to sham
TMS, after 1 Hz rTMS of the left intraparietal
sulcus (IPS), but not of either angular gyrus,
the effect of P increased, showing that this
region is involved in the implementation of C.
Figure 10 shows some of their results, based on
an analysis different from theirs.

In this study, a different opportunity was missed.
For findings such as these to contribute to process
decomposition,weneed toknownotonlywhich sub-
processes a brain region implements, but also which
subprocesses it does not implement. And the issue
of functional specificity is also important in interpret-
ing the association of brain regions with subpro-
cesses, one of the primary goals of such studies. In
addition to C, the left IPS might be important for
other processes used to perform the task. And for
this task there is a wealth of evidence for E, separate
fromC, and a factor (N ) known to influence it selec-
tively (Ex. 6.3). It would be helpful to use TMS to
confirm that E and C are implemented in different
brain regions, as suggested by fMRI. Without
enlarging the experiment, the stimuli on half of the
trials could have been number names (“SIXTY-
EIGHT”) rather than Arabic numerals, thus

63 The first study used neither sham TMS nor TMS of a different brain region as the control condition. The authors, who
reported only data from the target-present trials, in which the mean slope increased from 18.5 to 22.4 ms/item, claimed that
they had found no effect of TMS on the slope, but they report neither a test of the slope difference nor a confidence interval. In
the second study, in which the control condition was TMS of a different brain region, RT s were shorter, slopes were smaller,
and the effect of TMS on the slope was greater.
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including two levels of N . Given suitable balancing,
data from the two subsets of trials could have been
averaged to estimate the effect of P under TMS
and control conditions. But in addition, by telling
us whether the effect of N is modulated by rTMS
of the left IPS, such an experiment would also
permit asking whether that region is also important
for E. Ideally, it would answer negatively, demon-
strating the functional specificity of the left IPS by

showing invariance of the effect of N across levels
of TMSR.

11. PROCESS DECOMPOSITION
AND THE EFFECTS OF BRAIN
DAMAGE

Can localized brain damage (i.e., presence vs
absence of lesions in particular locations) permit

Figure 10. Four functions fitted 64 to the RT data for correct responses in the left-IPS TMS and Sham TMS conditions from Cappelletti,
Barth, Fregni, Spelke, and Pascual-Leone (2007, Exp. 1), in which subjects decided whether stimulus numbers were greater or smaller than
65. Panel A gives means of the four functions averaged over 10 subjects. Panel B gives means of the differences between the TMS and Sham
functions (the TMSR effect) together with their standard errors. Note the difference in scale. If the effects of P and TMSR were additive, the
two difference functions would be flat. Their increase with proximity shows the augmentation by rTMS of the P-effect, i.e., the interaction of
the effects of the P and TMSR factors.65

64 Data were retrieved for 11 of the 12 subjects; one of these, a clear outlier, was omitted. For each of the two conditions there
were only about 50 RTs per subject for trials with each of the two responses. Starting with robust locally fitted polynomial regression
(loess), a monotonic function was fitted to each of the four sets of observations for each subject. No adjustment was made for any
decline over time in the aftereffect of rTMS.

65 Future studies should concentrate observations on the closer proximities, where the P-effect is greater. Also, because there is
considerable variation across individuals in the magnitude of the P-effect, subjects should perhaps be selected for large P-effects.
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the demonstration of separatemodifiability of two or
more subprocesses that underlie performance of a
task? Consider the hypothesis that a particular task
is accomplished by a complex process consisting of
modular subprocesses A and B. Suppose there is
localization of function, such that a lesion in region
RA influences process A, while leaving process B
invariant, and suppose that it does not replace A
with a qualitatively different process. Define a
LesionRA factor that has two levels, no lesion and
lesion. And suppose there is a factor, G, that influ-
ences process B but not A.66 Given pure measures
MA and MB we would need to show that
LesionRA influences MA while leaving MB (and
hence the effect of G) invariant. Given a composite
measure MAB with summation as the combination
rule, we would need to show that the effects of
LesionRA and G on that measure are additive. In a
more complex scenario, our hypothesis might
include the idea that A is also selectively influenced
by non-lesion factor F . We would then also expect
LesionRA tomodulate the effect ofF onMA orMAB.

If the required selective influence could be
shown, it would support the hypothesis.
However, showing this faces two impediments.

(1) Inadequate precision to demonstrate invariance.
Suppose first that we have pure measures and
that the data are sufficiently precise so that the
effect ofLesionRA on processA could be persua-
sively shown, by comparing MA in a group of
one or more patients with the lesion to
a control group without the lesion.
Unfortunately, it is unlikely that the invariance
ofMB across levels ofLesionRA could be persua-
sively demonstrated. The difficulty in showing

the absence of an effect is that there is virtually
never any pre-lesion measurement,67,68 which
precludes within-subject comparison; given
the ubiquity of individual differences among
“normals”, the sample size necessary for persua-
sive demonstration of equality of MB between
groups of patient and control subjects is likely
to be impractically large.69 Next consider the
case where we have a composite measure MAB.
For example, A and B might be processing
stages, and the measure might be mean
reaction time, RT . Assuming that LesionRA

influences RT , additivity requires that the
effect of G on RT is invariant across levels of
LesionRA . Again, the required precision would
almost always require a comparison of large
groups.70

(2) Likelihood of qualitative change of the process
under study. The process-decomposition
approach depends on measuring a complex
process that is qualitatively the same (i.e., that
consists of the same set of subprocesses)
under different conditions (i.e., with different
levels of factors that influence how much
those subprocesses must accomplish). The
effect of changing the level of a factor cannot
be so great as to prevent the process that it
influences from working; this would require
that if the task is to be accomplished at all, it
would require a qualitatively different
complex process. Nor can the effect of chan-
ging the level of a factor be sufficiently great
so as to induce the patient to learn over time
to adopt a different “strategy”—a different
complex process—from the normal one. But
brain damage can sometimes have such effects.

66 This factor could, but need not, be the presence or absence of a lesion in a region RB within which process B was carried out.
67 This problem need not arise when the lesion is produced surgically, as in Farah, Soso, and Dashieff (1992). However, because such

lesions are produced to ameliorate some other pathology, such as epilepsy, they may be associated with more than one effect.
68Crawford andGarthwaite’s (2006) methods are concerned with showing the presence of an effect in a single patient, not its absence.
69 There is a sharp distinction between persuasive evidence of invariance and the failure to find a significant effect. In some papers

it is concluded that brain damage has no effect merely from the fact that the test of the effect proves not to be statistically significant.
Often no confidence intervals or other measures of the effect are provided that would permit one to decide how large the required
effect would have to be, for significance. One such example can be found in the interesting study of lateral prefrontal damage by
Gehring and Knight (2002).

70 Furthermore, if the second factor was a lesion in region RB, and only a composite measure was available, then a test of the
hypothesized combination rule would require some patients who had lesions in both regions.
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These impediments perhaps suggest the use
within cognitive neuropsychology of task-comparison
with its more limited goals, rather than process
decomposition.71

It is possible that TMS may overcome the dif-
ficulties described above. First, TMS sometimes
appears to be equivalent to a reversible lesion,
which enables within-subject comparisons, hence
greater precision. Second, the fact that the magni-
tude of TMS can be adjusted may mean that it can
be arranged to modulate the process that it
influences, rather than preventing it from function-
ing altogether. And third, because the functional
lesion produced by TMS is presumably short-
lived (rather than chronic) as well as being revers-
ible, it may be less likely to lead to a change in
the “strategy” by which a task is accomplished.

What should be the relation between
traditional cognitive neuropsychology (i.e., making
inferences about normal cognitive processes from
the effects of brain damage) and the process-
decomposition approach with normals? One goal
they share is the identification of separately modifi-
able processes of the normal brain. I suggest that
each can inform the other. The task theories,
modular processes, and processor locations inferred
or hypothesized on the basis of effects of brain
damage can be tested by using the process-
decomposition approach, the modules and task the-
ories tested by using factors that vary the task, the
processor locations by using fMRI or TMS. This
seems to be close to the view expressed by Gurd
and Marshall (2003, p. 194): “Double dissociations
help us to make plausible conjectures about the
functional architecture of mind, conjectures that
can then be further explored with . . . ‘process-

decomposition’ methods . . .” It also appears to be
close to the view expressed by Shallice (2003,
p. S148): “Consider cognitive domains in which
the functional architecture is poorly understood.
Even today this includes nearly all the underpin-
nings of thought . . . For such poorly understood
domains, the use of dissociations was essentially
viewed as a discovery procedure, which needs con-
verging evidence other than the dissociation per se
in order to support the existence of an isolable
system specifically impaired in the relevant patients.”
And the task theories and modular processes
inferred from the process-decomposition approach
in normals (along with the inferred processor
locations, if process decomposition is augmented
with fMRI or TMS) can be used to inform the
interpretation of the effects of brain damage.

12. ADDITIONAL ISSUES

12.1. Quantitative versus qualitative task
changes

As shown by Ex. 6.3, the distinction between process
decomposition (with its avoidance of task changes)
and task comparison can be subtle. In that
example, the fMRI data suggest that the effect of
the notation factor is probably better thought of as
qualitative rather than quantitative—as replacing
one encoding process by another, rather than
influencing the settings or parameters of the
“same” encoding process. Nonetheless, because of
the invariance of the effects of proximity on both
RT and brain activation, the findings in that
example provide evidence for modular processes.
In general, qualitative task changes should be

71 Other impediments to using brain damage as a factor in process decomposition are:
(3) The victims of strokes often have widespread cerebrovascular disease. Traumatic head injuries tend to produce widespread minor

damage, as well as localized major damage. This may be why damage that appears to be localized seems often to produce at least
small effects on many functions.

(4) Even where functionally distinct brain regions are spatially distinct there is no reason to expect that the region of damage due to
a stroke (which is determined by the brain’s vascular organization) corresponds, so as to be functionally specific. Indeed, the
localized effects of a stroke may be to damage nerve tracts that project to many brain regions.

(5) It may be difficult to find undamaged control subjects with overall levels of performance that are poor enough to be comparable.
One approach is to increase the difficulty of the task for these subjects, but such increases may themselves have differential
effects on different aspects of performance. Another approach is to select the better performing among the brain damaged sub-
jects, but such selection is also a potential source of bias.
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avoided because they reduce the likelihood of such
invariance, and hence the likelihood of identifying
modules. However, evidence is required to assert
qualitative task invariance. One kind of evidence is
the pattern of factor effects: for each factor, each
change in level should influence the same operations
and leave the same other operations invariant. The
usefulness of such evidence is one of several
reasons for using factors with more than two levels
(see SM:A.2, SM:A.9).

12.2. Specialized processors and modular
processes

Does the existence of localized neural processors
that implement functionally distinct processes
imply the modularity of those process? To address
this question, consider one kind of evidence used
to establish the existence of two processors:
Suppose that T1, T2, and T3 are three tasks, such
that distinct brain regions Ra and Rb are activated
during T1, Ra but not Rb is activated during T2,
and neither region is activated during T3. Many
would conclude that processes a and b (carried
out in Ra and Rb respectively) are functionally dis-
tinct, and that tasks T1, and T2 use a, task T1

uses b, and task T3 uses neither. While it may
seem plausible, such task-specificity of Ra and Rb

does not require the processes they implement in
T1 to be modular, in the sense of being separately
modifiable. For example, suppose, that a provides
a motivational or attentional resource required by
b, or controls which of several variants of b is
being used. A change in a would then induce a
change in b, and the effect of a change in b

would depend on the status of a.

12.3. Relation between mental and neural
processing modules

Consider modular mental processes in a task, sup-
ported by behavioural evidence, and modular
neural processes in that task, supported by brain

measurements. Does either of these imply the
other? On which psychophysical-physiological
“linking propositions” (Teller, 1984) does the
answer to this question depend? It would be
helpful to have more studies (such as Exs. 3.2, 6.3,
6.4, and 6.5), in which both brain and behavioural
measures are taken, both directed at process
decomposition. One starting point would be to
take cases where behavioural data already exist
that persuasively favour a modular decomposition,
as was done in Exs. 6.3 and 6.4, and ask whether
there is a corresponding decomposition based on
brain data into modular neural processes that are
influenced by the same factors and invariant with
respect to the same other factors. In this respect
Ex. 6.4 backfired: although the fMRI data sup-
ported the expected modularity of stimulus encod-
ing and response selection, the RT data did not.
In general, fMRI measures in some subsets of
regions might show modularity (selective effects
on pure measures, additive effects on composite
measures), but because other regions are involved,
the mental processes might not be decomposable.

12.4. Differential influence as a criterion
for modularity

Is separate modifiability too strong or too weak to be
a useful criterion for partitioning a process? What
are the relative merits of alternative criteria for
modularity, and alternative approaches to module
identification? Is the weaker differential influence
more useful than selective influence?72 It is helpful
to be precise about the meaning of differential influ-
ence in a way that clarifies its relation to selective
influence. Assume that factor levels are assigned so
that an increase in level produces an increase in
the measure of the corresponding process, consider
the case where both measures of interest change in
the same direction, and let Fj and Gk be numerical
factor-level strengths of factors with two levels. Let
MA(DF ) = MA(F2) −MA(F1) represent the effect
of a change in factor F on a measure of process A,

72 If one variety of differential influence obtains, one can find factors F and G such that both factors influence both processes A
and B, but forA (B) the effect of F (G) is the larger (Kanwisher et al., 2001).Whether differential or selective influence characterizes
processors is controversial (Haxby, 2004; Reddy & Kanwisher, 2006).
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etc. Then selective influence can be described as the
combination of four properties: MA(DF ) . 0,
MB(DG) . 0,MA(DG) = 0, and MB(DF ) = 0.
The first two properties show that factors F and
G are both potent and that measures MA and
MB are both sensitive. If measures MA and MB

were measures of the same process, the second
pair of properties would therefore be impossible.
In this terminology, differential influence is
satisfied if either MA(DF ) . MA(DG) and
MB(DF ) , MB(DG), or if MA(DF ) . MB(DF )
and MA(DG) , MB(DG).73 Suppose we are
willing to assume that the functions relating MA

and MB to factor levels differ by at most additive
and multiplicative constants:

MB(x) = gMA(x) + h. (16)

Then differences in sensitivity or potency can
explain neither of these pairs of properties; MA

and MB must be measures of different processes.
However, without that assumption, such pairs of
properties could result from differences between
measures of the same process.74Whether constraint
(16) is plausible or valid depends on the nature of
MA and MB.

12.5. Factorial experiments: Verification
plus discovery

Despite R. A. Fisher’s (1935) explanation of the
advantages of factorial experiments, they are used
too seldom with behavioural or brain measure-
ments, and are then usually limited to two factors.
Factorial experiments are efficient: there is virtually
no loss of precision from adding a second orthog-
onal factor to a one-factor experiment, or a third
orthogonal factor to a two-factor experiment, for
example, without adding trials. In the case of com-
posite measures we have seen that factorial exper-
iments are essential for determining how effects

combine, which is theoretically critical. By includ-
ing subsidiary factors with those of primary interest
(as in “fishing expedition”) it is possible to combine
discovery with verification, as well as testing the
generality of the effect of primary interest. In
blocked designs the resulting increase in the
number of conditions adds to the difficulty of
balancing conditions across levels of practice, but
even this issue doesn’t arise in random designs,
such as “event-related” fMRI experiments and
many TMS experiments. For examples of missed
opportunities to learn more by including additional
factors in TMS experiments without increasing
their size, see Sections 10.2 and 10.4.

When it is possible to define more than two
levels of a factor, this should be considered. As
well as having other advantages (Section 12.1;
SM:A.9), multiple levels permit more powerful
tests of interaction,75 and permit focused tests of
monotone interaction, the interaction of most
interest. (SM:7, SM:15)

12.6. Implications of brain metabolism
constraints

The metabolic requirements of brain activity are
large relative to the available energy supply, with
the implication that, given the spike rates of
active neurons, no more than about 1% of the
neurons in the brain can be concurrently active
(Lennie, 2003). Implications of these severe meta-
bolic limitations for the plausibility and possibility
of alternative processing architectures, and for the
modularity of processors, have to be considered.

13. CONCLUSION

Considerable evidence has accumulated, some of
it documented here, for the existence within
complex mental and neural processes of modular

73 With suitable normalization, these pairs of inequalities are equivalent.
74 For example, suppose that MA(x) = x2 and MB(x) = x, where x is the level (“strength”) of a factor. Let F1 = 1.4, F2 = 1.6,

G1 = 0.3, and G2 = 0.6. Then both of the above pairs of properties are satisfied.
75 For example, a 2× 2 design, with four conditions, provides only one df for interaction, whereas a 3× 3 design, with nine

conditions, provides four df.

COGNITIVE NEUROPSYCHOLOGY, 2011, 28 (3 & 4) 201

MODULAR PROCESSES IN MIND AND BRAIN

D
ow

nl
oa

de
d 

by
 [

17
3.

59
.6

6.
15

7]
 a

t 1
7:

52
 1

7 
A

pr
il 

20
12

 



subprocesses that are separately modifiable and
that carry out distinct functions. Of course, the
identification of such subprocesses is only a first
step in the understanding of the complex processes
to which they belong; it needs to be followed by
detailed understanding of how each of the
modules works, sometimes in the form of quanti-
tative models, and about the relationship of the
neural and mental modules. The success thus far
across a range of cognitive domains encourages
further searching, and raises questions about how
best to do so.

RELATED DISCUSSIONS

For Hadley’s defense of the existence and plausi-
bility of mental modules against attacks by Fodor
(2000), Kosslyn (2001), and Uttal (2001), see
Hadley (2003). For other discussion of the

properties that Fodor (1983) ascribed to modular
processes, see Coltheart (1999) and Jacobs (1997).
For discussions of double dissociation of tasks, as
in the task-comparison method, a good place to
start is with Schmidt and Vorberg (2006). For
more on the process-decomposition approach see
Sternberg (2001) (described in Section 2.3) and
references therein. For the method of additive
factors and numerous examples of its application,
see SM:16, SM:A.16, Roberts and Sternberg
(1993), Sternberg (1998a), Sanders (1998), and
references therein.

AUTHOR NOTE

Supplementary data (a table of features of the
nineteen examples in Sternberg, 2001, and this
article) is published online alongside this article
at: www.psypress.com/cogneuropsychology.
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ABBREVIATIONS GLOSSARY

Listed here are the main abbreviations used, the numbers of the sections where they are introduced, and
brief definitions.

A,B 1 processes: mental
Amc(t) 3.1 motor cortex asymmetry as a function

of time
B 7.2 level of the BOLD fMRI signal
B(N ) 7.2 function relating B to amount of

neural activity, N
BOLD 2.3 blood-oxygen-level dependence

(fMRI signal)
C 6.3 process: comparison
c 5 criterion
D 5 process: decision
d 9.1 distance dimension to be judged
d ′, d-prime 5 discriminability measure
d-factors 5 factors that are likely to influence the

decision process
DS 10.2 factor: display size
Da, Db 3.2 durations of processes a, b
Dajk 3.2 duration of a when SQ = SQj and

RC = RCk

Da·· 3.2 mean duration of a, over levels of SQ
and RC

E 6.3 process: encoding
ERP 2.2 event-related potential
F,G 2.1 factors
fMRI 1 functional magnetic resonance

imaging
Fj 2.2 Factor F at level j
GND 3.1 factor: go-nogo discriminability
H1 2.2 hypothesis 1
LesionRA 11 factor: presence or absence of a lesion

in region RA

LRP 3.1 lateralized-readiness potential
LRPs, LRPr 3.2 stimulus-locked LRP, response-

locked LRP
MC 3.1 factor: mapping compatibility
MF 4.3 factor: mapping familiarity
MA 2.2 (pure) measure of process A
MAB 2.2 composite measure to which A and B

contribute
N 6.3 factor: notation

Na, Nb 7.2 amount of neural activity in
populations that implementa andb

P 6.3 factor: numerical proximity |k - 65|
p.effect 8.2 proportional effect
PET 6.1 positron emission tomography
PM 5 factor: payoff matrix
PPA 6.5 parahippocampal place area
Pr{nonsuccess} 8.2 probability of nonsuccess
Pa, Pb 6.1 neural processors that implement a, b
Pab 6.2 neural processor that implements

both a and b

R 4.3 process: response selection
r 9.1 roughness dimension to be judged
RC 3.2 factor: response complexity
REL 8.4 factor: semantic relatedness
RR 5 factor: reinforcement ratio:

Pr{RNT |Reward}
Ra, Rb 6.1 brain regions that contain Pa, Pb

Rab 6.2 brain region that contains Pab

RT , RNT 5 target and nontarget responses
rTMS 2.3 repetitive transcranial magnetic

stimulation
RT, RT 2.2 reaction time, mean reaction time
S 4.3 process: stimulus encoding, or

process: sensory
SAT 8.4 factor: semantic satiation
s-factors 5 factors that are likely to influence the

sensory process
SLP 4.3 factor: sleep state
SM 2.3 reference to Sternberg (2001)
SQ 3.2 factor: stimulus quality
ST , SNT 5 target and nontarget stimuli
TD 4.3 factor: time of day
TMS 2.3 transcranial magnetic stimulation
TMSR 2.3 factor: presence or absence of TMS of

brain region R
u, v 2.2 contributions of A and B to MAB

XT , XNT 5 target and nontarget representations
a, b 1 processes: neural
1 6.3 process: neural that implements E
g 6.3 process: neural that implements C
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