
Brain Imaging and Brain Privacy: A Realistic Concern?

Martha J. Farah, M. Elizabeth Smith, Cyrena Gawuga, Dennis Lindsell,
and Dean Foster

Abstract

& Functional neuroimaging has been used to study a wide ar-
ray of psychological traits, including aspects of personality and
intelligence. Progress in identifying the neural correlates of in-
dividual differences in such traits, for the sake of basic science,
has moved us closer to the applied science goal of measuring
them and thereby raised ethical concerns about privacy. How
realistic are such concerns given the current state of the art? In

this article, we describe the statistical basis of the measurement
of psychological traits using functional neuroimaging and ex-
amine the degree to which current functional neuroimaging
protocols could be used for this purpose. By analyzing the pub-
lished data from 16 studies, we demonstrate that the use of
imaging to gather information about an individual’s psychological
traits is already possible, but to an extremely limited extent. &

INTRODUCTION

Progress in neuroscience raises a number of ethical con-
cerns. Among the most prominent of these concerns is
the potential use of functional neuroimaging to obtain
personal information about individuals. Recent studies have
reported neuroimaging correlates of personality, attitudes,
and intelligence (for reviews, see Gray & Thompson, 2004;
Duncan, 2003; Illes, Kirschen, & Gabrieli, 2003; Canli &
Amin, 2002). By analogy with the term ‘‘genotyping,’’ the
use of neuroimaging to determine features of brain func-
tion relevant to an individual’s traits could be called
‘‘brainotyping.’’ Many of the same ethical issues that
have arisen with genotyping may also arise with braino-
typing. For example, both genotyping and brainotyping,
in principle, raise serious concerns about privacy (Illes &
Racine, 2005).

Like the tissue samples used for genotyping, brain
images can be obtained with consent for one purpose
but later analyzed for other purposes. Correlations be-
tween brain function and psychological traits are often
obtained in the context of tasks that lack an obvious
relation to the trait being measured. For example, ex-
traversion and unconscious racial attitudes are both
correlated with brain activity evoked by simply viewing
pictures of faces (Canli, Sivers, Whitfield, Gotlieb, &
Gabrieli, 2002; Phelps et al., 2000). Hence, in these stud-
ies, subjects could be told that the purpose of the scan
was related to face perception. This feature of neuro-
imaging-based studies of psychological traits makes it
relatively easy to obtain information about a person with-
out their knowledge.

Although a number of writers have commented on
the potential threat to brain privacy posed by functional
neuroimaging (New York City Bar Association, 2005;
Farah & Wolpe, 2004; Hyman, 2004; Kennedy, 2004;
Illes, 2003; Canli & Amin, 2002), little attention has been
paid to the question of whether this threat is realistic,
given the current state of the field. Exceptions include
Canli (2006), who argues that brain imaging data may
provide better measures of personality than convention-
al paper-and-pencil tests, and in contrast, Levy (2007,
Chap. 4) and Gazzaniga (2006, Chap. 7), who argue that
current technologies for brain imaging are unlikely to
enable any kind of socially relevant ‘‘mind reading.’’

It is clear that measurement of psychological traits
using neuroimaging is, in principle, possible, and that
such a use raises ethical concerns. However, it is not
clear whether such measurement is a likely development
in the near term, a more remote but still realistic goal for
the future, or whether it remains effectively a science
fiction scenario.

The present article addresses this issue by answering
the question: What can the current state of the art in
functional neuroimaging of psychological traits tell us
about an individual? An explicit answer to this question
is not available in the literature because published func-
tional neuroimaging research has not been directed to-
ward the measurement of normal psychological traits
for the purpose of characterizing individuals. Rather, the
goal of individual differences research with functional
neuroimaging has been to understand the brain bases of
variation in psychological traits across the population. In
other words, current functional neuroimaging research
on individual differences is not carried out for the
applied science goal of measuring levels of traits inUniversity of Pennsylvania
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individuals, but rather the basic science goal of identify-
ing those features of brain function that underlie indi-
vidual difference in psychological function.

On the basis of this alone, one might conclude that
worries about brain privacy are premature. Just as the
possibility of genotyping individuals to obtain useful
information about psychological traits is, at present, re-
mote, we might conclude that prospects for brainotyp-
ing individuals are also unrealistic. Genetic research on
individual differences in psychological traits has yet to
identify any specific genes with more than extremely
weak correlations with such traits (Parens, 2004; Van
Gestel & Van Broeckhoven, 2003), and this research has
had a few decades’ head start on functional neuroimag-
ing research on individual differences.

However, one should not dismiss the prospect of
brainotyping on these grounds. Two considerations argue
for the possibility of current or near-term measurement
of psychological traits using functional neuroimaging.
First, the analogy between functional neuroimaging and
genotyping is imperfect. Behavioral geneticists have con-
cluded that most complex psychological traits involve
multiple genes and are determined by a combination of
genes and experience. This would account for the weak
relations between individual genes and psychological
traits, and predicts only moderate success, at best, in pre-
dicting such traits from a complete genetic analysis. In
contrast, brain function is one causal step closer to be-
havior, in that it reflects the joint influence of genome
and experience. Although there is no guarantee that the
most relevant aspects of brain function are captured by
current functional neuroimaging methods, such methods
at least target a point on the final common pathway for
the full set of genetic and environmental influences on
psychology, and are therefore more likely to provide use-
ful correlates.

Second, an empirical basis for brainotyping already
exists. Although imaging studies, to date, have indeed
focused on relations between psychological traits and
brain activity across groups of subjects, the data collect-
ed in these studies are, in principle, as applicable to the
goal of individual measurement as to the goal of gener-
alizing about the neural bases of these traits. For either
goal, one needs the same information, namely, informa-
tion about the distributions of brain activation measures
and psychological measures and the correlation between
the two. Here we describe a statistical basis of the mea-
surement of psychological traits using functional neuro-
imaging, and use it to determine the degree to which
current functional neuroimaging protocols could be used
for this purpose.

A Statistical Basis for Brainotyping

For a particular neuroimaging study of individual differ-
ences in a psychological trait, given the mean and stan-
dard deviation of brain activity in the relevant region of

interest (ROI) (b and sb) and of the trait ( p and sp), and
the correlation between them, rho (r), we can use the
level of brain activity of a hypothetical new subject (b) to
predict his or her likely level of the psychological trait
(p̂):

p̂ � p

sp
¼ r

b � b
� �

sb

p̂ ¼ p þ r
sp

sb
b � b
� �

Of course, for r < 1, there will be an interval around
the predicted value within which the true level of
the psychological is likely to fall. This is illustrated in
Figure 1. The distribution shown on the y-axis repre-
sents the postscan prediction, that is, the range of trait
values and associated probabilities for a subject, given a
brain activation value. Its spread depends on the length
of the prescan prediction interval and the strength of the
correlation.

The predictive value of the brain activation can be
expressed in terms of the prediction interval, omega
(�), which is the range of values within which the true
value will fall some set percentage of the time. A con-
ventional choice of percentage would be 95%, yielding
an interval that extends from roughly 2 standard devia-
tions above the predicted value to 2 standard deviations
below it.

Before a scan, the prediction interval for a psycholog-
ical trait is simply the range of scores that 95% of the
relevant normal population would be expected to have;
its length is four times the standard deviation of that
trait in this population. If a scan is informative about a
psychological trait, then after the scan, we will be able to
define a shorter interval within which the subject has a

Figure 1.
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95% probability of falling, that is, an interval that is some
number smaller than 4 standard deviations of the trait in
the population.

The length of the postscan prediction interval de-
pends on the prescan interval and the strength of the
correlation between the brain activation and psycholog-
ical trait as follows (Sheskin, 1997, Equation 22.12):

�postscan ¼ �
prescan

ffiffiffiffiffiffiffiffi
1�r2

p

Thus, the reduction in the prediction interval from pre-
scan to postscan is a straightforward measure of a scan’s
informativeness, which depends on the strength of cor-
relation between the relevant measure of brain activity
and the trait.

The foregoing assumes that the correlation between
brain activity and trait is known with certainty, which
would be a reasonable approximation for studies with
large samples of subjects. However, in the current lit-
erature, the correlations between brain activation and
psychological trait are estimated with small groups of
subjects and, therefore, have errors of their own, as
illustrated in Figure 2. Although the analyses just pre-
sented take into account error in the individual meas-
ures (sb and sp), they do not take into account error in
the correlation coefficient (r).

In order to take into account the error of estimating
the correlation between brain activity and psychological
trait, as well as the error in the two measures being cor-
related, we need to begin with the individual data points,
from which the published correlations above were com-
puted, and build a regression model of the relation be-
tween the measured activations and traits. The model
takes the form of an equation converting a subject’s brain
activation value into a psychological trait level, along with
a confidence interval around that prediction, in other
words, the prediction interval, �. The proportional re-
duction in prediction interval resulting from the scan is a

measure of the scan’s informativeness concerning an
individual.

METHODS

Search Method

Medline was searched using the following combined
keywords: [individual differences OR intelligence OR
personality] and fMRI, for articles published in 2006 or
before. Additional articles were identified by colleague
recommendation. This search procedure yielded a total
of 1875 articles. On the basis of the articles’ abstracts,
a set of 64 articles was identified as being potentially
relevant, in that they reported a relationship between
individual differences in brain activation and in a psy-
chological trait for a sample of normal human subjects.
Four additional criteria were then applied.

First, we required that the psychological trait under
study has some social or personal relevance, such that
privacy could conceivably be a concern, according to
our intuitions. An example of a study excluded by this
criterion is Urry et al.’s (2006) study of individual differ-
ences in the diurnal slope of salivary cortisol secretion.

Second, we required that the subject sample be un-
selected for the trait under study (e.g., we excluded
extreme group designs). An example of a study excluded
by this criterion is Bertolino et al.’s (2005) study of fear
responsiveness in which subjects were selected for being
prone to phobia.

The third criterion concerned the number of inde-
pendent tests carried out in each study. We adopted this
criterion to limit the number of spurious results in the
review, and thus, avoid overestimating current braino-
typing capabilities. The most common reason for exclu-
sion was insufficient constraint on ROIs. Only results
from a priori ROIs, obtained in studies with just one or
two such ROIs, were included. ROIs could be defined
anatomically or functionally. The ROI criterion excluded
studies that used whole-brain analyses and also excluded
studies with several a priori ROIs. Some of the latter
found predominantly null results (e.g., Matthews, Ward,
& Lawrence, 2004, examined 22 a priori ROIs in a study
of attentional control and fearfulness and found a reli-
able relationship between brain activation and behavioral
inhibition in only one ROI), whereas others found pre-
dominantly positive results (e.g., Beaver et al., 2006,
examined nine ROIs and found reliable relationships
between brain activation and reward drive in five of
them). In addition to limiting the number of ROIs, we
also excluded studies in which multiple traits were ex-
amined for correlation with brain activation. An example
of an article eliminated by this criterion is Stark et al.’s
(2005) study of disgust sensitivity, in which five different
subscales of their Questionnaire for Disgust Sensitivity
were analyzed separately. A final restriction aimed at lim-
iting the possibility of spurious findings was to confineFigure 2.
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the search to studies relating psychological traits to rel-
atively simple and commonly used imaging measures, in-
cluding percent signal change, number of suprathreshold
voxels, and adaptation, rather than to more complex
functions derived from these measures such as asymme-
try ratios or rate of activation change across conditions.
An example of an article eliminated by this criterion is
Xue, Chen, Jin, and Dong’s (2006) study relating language
learning with asymmetry of fusiform activation.

Fourth, we selected those studies for which the pub-
lished articles included scatterplots showing the rela-
tionship between trait scores and brain activations.
These scatterplots provided the data for the analyses
to be presented here. Specifically, they provided the pair-
ing of a trait value and a brain activation value for each
individual subject in each ROI. We also required that the
brain activations shown in the scatterplots be from the
entirety of each a priori ROI, rather than from voxels
within an ROI chosen to illustrate the relationship at its
strongest, in order not to bias our results. An example of
an article eliminated by this criterion is Singer et al.’s
(2004) study of empathy.

Sixteen studies met all four criteria, and these are
shown in Table 1. The psychological traits measured in
these studies ranged from personality traits and other
aspects of affective functioning to intelligence and spe-
cific cognitive aptitudes. As shown in Table 1, these were
studied in the contexts of tasks that lacked obvious re-
lationships to the traits.

Data Transcoding and Analysis

Published scatterplots were enlarged up to 300% in
order to obtain a range of at least 5 cm for the range
of psychological trait values. The enlargements were
printed onto transparent sheets, which were superim-
posed on graph paper to facilitate reconstruction of the
coordinates of each point. Note that measurement error
will have the effect of underestimating the predictive
power of brain imaging.

The goal of data analysis was to determine the pro-
portion of reduction in the prediction interval for a
hypothetical new subject as a result of scanning that
subject. For each study, the brain activations were the
independent variables and psychological trait level was
the dependent variable in univariate regression analyses
using JMP IN 5.1. Regression analysis was used to model
the relation between measures of brain activity in a
specific ROI and levels of the trait in question, yielding
an equation that expresses the predicted level of a psy-
chological trait as a function of brain activation in the
ROI. Crucially, these analyses yield the expected error of
the predicted level of trait.

The informativeness of a scan was measured as the
reduction in the range of possible values of a trait for a
hypothetical new individual subjected to the scanning
protocol. Before the scan, the 95% confidence interval for

the subject is the mean of the distribution of trait levels,
plus or minus 2 standard deviations of that trait. After the
scan, we get a new and narrower interval. The ratio of
these two is our measure of the scan’s informativeness.

RESULTS

Table 2 shows the prediction interval for a hypothetical
new subject before and after being scanned using the
protocol of each of the 16 studies reviewed here. The
reduction of the prediction interval, shown in the right-
most column, indicates by how much the range of pos-
sible trait levels would be narrowed as a result of the
scan.

The reduction varies across studies, ranging from less
than 10% to more than half. For 7 of the 16 studies, a
scan would be expected to narrow the range of a per-
son’s possible trait levels by at least one third; for 3 of
the 16 studies, the range would be reduced by at least
half. To put these numbers in perspective, consider
what we could expect to learn from some of the scan-
ning protocols reviewed here.

The least informative scanning protocol identified by
us concerns reading span (Reichle, Carpenter, & Just,
2000). If a new subject was scanned and the activity in
the relevant region of the left inferior frontal cortex was
one standard deviation below the average of the sample
reported by Reichle et al. (2000), then we would know
that his or her reading span score lies between 2.3 and
5.5 with a probability of 95%. Because the range of read-
ing span scores for the sample is approximately the
same, namely, from 2.0 to 5.0, the brain imaging proto-
col would have told us very little about the new subject’s
likely reading span.

A more informative protocol concerns the personality
trait of extraversion as studied in an emotional Stroop
task (Canli, Amin, Haas, Omura, & Constable, 2004). A
subject whose anterior cingulate activity was one stan-
dard deviation below average in this task would be ex-
pected, with 95% probability, to have an extraversion
score between 18 and 35. Although this remains a fairly
wide range, it does exclude a substantial segment of the
extraversion scale. For example, Canli’s subjects spanned
21 to 42 on the scale. Simply on the basis of this hy-
pothetical subject’s scan, one could reasonably infer that
the subject is not a particularly extraverted individual.

The most informative protocol identified here concerns
navigational ability (Epstein, Higgins, & Thompson-
Schill, 2005). If the brain activation of a new subject in
this scanning protocol was one standard deviation below
normal, then we could infer that his or her navigational
ability is 95% certain to lie between 2.5 and 4.5. In com-
parison, the range for the sample is 3.2 to 6.1. Simply
by measuring a person’s brain responses when viewing
pictures of scenes, without requiring any real or simu-
lated navigation, we can learn a fair amount about his or
her navigational ability—for example, in this hypotheti-
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Table 1. The 16 Studies Analyzed Here, Grouped According to General Type of Psychological Trait

Trait Study, Sample Size Trait Measure Regions of Interest Activation Task and Contrast(s)

Intelligence

Navigational ability Epstein et al., 2005
(n = 12)

Santa Barbara
Sense of
Direction Scale

Parahippocampal
place area

Place-change relative to
viewpoint-change of an
environmental scene

Verbal intelligence Geake & Hansen,
2005 (n = 12)

Verbal
Intelligence
score from the
National Adult
Reading Test

Left BA 9
and 45/46

Letter-string analogy task

Visual–spatial skill Reichle et al., 2000
(n = 12)

Vandenberg
Mental Rotation
Task

Left and right
parietal

Sentence–picture verification task
using a visual-imagery strategy

Reading span Reichle et al., 2000
(n = 12)

Reading Span
Test

Left and right
inferior frontal

Sentence–picture verification task
using a verbal strategy

Negative Affectivity

Anxiety Critchley, Wiens,
Rotshtein, Ohman,
& Dolan, 2004
(n = 11)

Hamilton
Anxiety Scale

Right anterior
insular/opercular
region

Perception of self heartbeat

State anxiety Bishop, Duncan, &
Lawrence, 2004
(n = 27)

Spielberger
State–Trait
Anxiety
Inventory

Left and right
amygdala

(I) Subliminal perception of fearful
faces relative to neutral faces

(II) Attentional modulation of
fearful vs. neutral attended faces
relative to fearful vs. neutral
unattended faces

Threat sensitivity Cools et al., 2005
(n = 12)

Behavioral
Inhibition Scale

Left and right
amygdala

Gender categorization of fearful
faces relative to happy faces

Pessimism (tendency to
believe that negative
life events occur for
reasons likely to
persist, whereas
positive life events are
exceptions and
special cases)

Fischer, Tillfors,
Furmark, &
Fredrikson, 2001
(n = 13)

Attributional
Style
Questionnaire

Left and right
amygdala

Viewing films of snakes

Harm avoidance Paulus, Rogalsky,
Simmons, Feinstein,
& Stein, 2003
(n = 15)

Temperament
and character
inventory

Left and right
insula

Response to punishment in simple
gambling game of high-risk
gambles

Neuroticism Paulus et al., 2003
(n = 15)

NEO Five Factor
Inventory

Left and right
insula

Response to punishment in simple
gambling game of high-risk
gambles

Negative bias in
racial evaluation
(the tendency
to evaluate
other-race strangers
more negatively than
same race)

Phelps et al., 2000
(n = 12)

Implicit
Association Test

Bilateral
amygdala

Viewing of facial photographs of
unfamiliar black faces,
relative to unfamiliar white
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cal case, that it is not very good and, more likely than
not, below average.

On the basis of this small sample of studies, certain
brain regions appear to be more predictive than others
of individual differences, in some cases, predicting indi-
vidual differences in multiple different traits. For exam-
ple, the amygdala appears in numerous rows of Table 2,
in association with traits as diverse as pessimism, auto-
matic racial evaluations, and extraversion. Of course,
these diverse traits correlate with amygdala activations
measured in very different tasks. The neurobiological
correlate of these traits is not activation of an area per se,
but activation of an area by a certain task.

DISCUSSION

The present results indicate that a modest degree of
brainotyping capability already exists. The potential use
of functional brain imaging to gain knowledge of some-
one’s psychological traits is not science fiction, but rather
a realistic possibility, albeit limited in important ways.

One limitation concerns generalizability of the rela-
tionship between brain activation and psychological trait
to populations other than the typical volunteer subject
for functional magnetic resonance imaging (fMRI) ex-

periments. A measure that correlates well in one sample
will not necessarily correlate as well with people of other
ages and backgrounds. A similar caution applies con-
cerning the generality of fMRI measures across different
circumstances. There is no guarantee that a correlation
found under one set of circumstances, for example vol-
untary participation in a cognitive neuroscience experi-
ment, will remain equally predictive under a different
set, for example the stress of employment screening. Of
course, concerns about generalizability are not unique
to brain imaging measures. The specific questions asked
on a paper-and-pencil test may be more effective at mea-
suring personality or ability in one population than in
another, and differences in the stress or distractions of
the testing situation can influence paper-and-pencil test
results as well.

Another caution regarding the present results con-
cerns a possible bias in the studies reviewed. If other
similar studies were carried out and produced null re-
sults that were not published, then a review of published
results would overestimate the predictive power of func-
tional neuroimaging. Again, this is a concern that applies
equally well to other measures. It will be either born out
or dispelled with continuing empirical work.

In some ways, the present review underestimates
the predictive power of the current state of the art in

Trait Study, Sample Size Trait Measure Regions of Interest Activation Task and Contrast(s)

Trait rumination Ray et al., 2005
(n = 24)

Ruminative
Responses
Scale;
Rumination
subscale of the
Rumination and
Reflection
Questionnaire;
Anger
Rumination
Scale

Left and right
amygdala

Cognitive reappraisal when viewing
a negative or neutral photo

Extraversion and Related Personality Traits

Extraversion (high
energy level, sociability,
assertiveness and a
tendency to seek
enjoyment; a prime
dimension in virtually all
theories of personality

Canli et al., 2002
(n = 15)

NEO Five
Factor Inventory

Left and right
amygdala

Viewing of happy relative to
neutral faces

Extraversion Canli et al., 2004
(n = 12)

NEO Five Factor
Inventory

Bilateral anterior
cingulate

Emotional Stroop with positive
words relative to neutral words

Behavioral Approach
(tendency to approach
and be activated by
rewarding stimuli)

Gray & Braver, 2002
(n = 14)

Behavioral
Approach Scale

Caudal anterior
cingulate cortex

3-back working memory task

Table 1. (continued)
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functional neuroimaging. A simple way of boosting pre-
dictive power involves examining relationships between
traits and higher-order patterns combining brain areas
and different task conditions. For example, if the mea-

sure of extraversion obtained from the left amygdala in
Canli et al.’s (2002) face-viewing protocol is not entirely
redundant with the measure obtained from the anterior
cingulate cortex in Canli et al.’s (2004) Stroop protocol,

Table 2. The Prescan and Postscan Prediction Intervals for Each Study and Each ROI, Measured on the Scale of the Psychological
Trait, and the Percentage Reduction of Prediction Interval from Pre- to Postscan

Trait Study Regions of Interest
Prediction Intervals
Prescan, Postscan

Reduction of
Prediction Interval

Intelligence

Navigational ability Epstein et al., 2005 Parahippocampal
place area

0.814, 0.496 64%

Verbal intelligence Geake & Hansen, 2005 BA 9 6.56, 3.54 46%

BA 45/46 6.56, 3.21 51%

Visual–spatial skill Reichle et al., 2000 L. Parietal 6.14, 5.51 63%

R. Parietal 6.21, 5.20 19%

Reading span Reichle et al., 2000 L. Inferior frontal 0.868, 0.804 7%

R. Inferior frontal – –

Negative Affectivity

Anxiety Critchley et al., 2004 R. Anterior insular/
opercular region

4.88, 3.55 27%

State anxiety (I) Bishop et al., 2004 L. Amygdala 9.00, 8.10 11%

R. Amygdala – –

State anxiety (II) Bishop et al., 2004 L. Amygdala 8.11, 7.04 13%

R. Amygdala – –

Threat sensitivity Cools et al., 2005 L. Amygdala – –

R. Amygdala 3.77, 2.76 37%

Pessimism Fischer et al., 2001 L. Amygdala 2.27, 2.03 11%

R. Amygdala 2.32, 1.94 13%

Harm avoidance Paulus et al., 2003 L. Insula – –

R. Insula 4.39, 3.88 12%

Neuroticism Paulus et al., 2003 L. Insula – –

R. Insula 0.412, 0.347 16%

Racial evaluation Phelps et al., 2000 Bilateral amygdala 71.3, 60.9 15%

Trait rumination Ray et al., 2005 L. Amygdala 1.44, 1.05 37%

R. Amygdala 1.42, 1.13 26%

Extraversion and Related Personality Traits
Extraversion

Canli et al., 2002 L. Amygdala 6.26, 4.58 27%

R. Amygdala – –

Extraversion Canli et al., 2004 Bilateral anterior
cingulate

11.6, 7.14 39%

Behavioral approach Gray & Braver, 2002 Caudal anterior
cingulate cortex

6.65, 4.07 39%
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then one could narrow the extraversion prediction in-
terval further by administering both tasks to a subject.

The results of our review suggest that brainotyping
using functional neuroimaging can provide more pre-
dictive biological correlates of psychological traits than
genotyping. This is not surprising, in principle, because
of the difference between the two mentioned earlier,
namely, that brain function is a causal step closer to be-
havior than are genes. It is also consistent with the
empirical observation that the percentage of variance
in psychological traits accounted for by single genes is
typically 5% or less (Parens, 2004; Van Gestel & Van
Broeckhoven, 2003), whereas the correlations between
imaging measures and such traits are often reported to
be .6 and higher, accounting for 36% and higher of the
trait variance.

Do our results have implications for current research
practice? We believe that they do not, in the sense of
requiring any additional protection of research partic-
ipants’ privacy. Rather, they suggest that existing IRB
guidelines designed to maintain confidentiality of imag-
ing data, which might once have seemed to be regula-
tory overkill for cognitive neuroscience researchers, are
in fact prudent measures.

The measurement of socially relevant psychological
traits with fMRI should be distinguished from the mea-
surement of socially relevant psychological states, de-
fined as more transient characteristics of the mind such
as mood, momentary emotional states, and the contents
of thought. Brain imaging has also been used in the
study of mental states. Examples of states with social rel-
evance include deception, false memory, and consumer
interest. For example, the possibility of a brain-based lie
detector has captured the imagination of the public and
motivated numerous researchers to seek reliable neural
correlates of intentional deception (for a review, see Wolpe,
Foster, & Langleben, 2005). In contrast to the literature
on traits, much of this literature is explicitly concerned
with issues of real-world usefulness. Ironically, and in con-
trast to the trait literature, the prospects for useful mea-
surement of truthfulness seem remote (Stern, 2002).

Bioethical issues have normative (‘‘what should be’’)
and empirical (‘‘fact of the matter’’) components. The
broader context of brain privacy includes several impor-
tant normative issues. For example, is there a difference
between behavioral privacy (i.e., privacy of words and
deeds) and brain privacy (i.e., privacy of inner mental or
neural processes)? Under what circumstances can brain
privacy be breached? What is the proper balance be-
tween the rights of individuals to brain privacy and the
needs of society, for example, in screening applicants for
law enforcement, childcare, and other positions where
character is crucial?

An empirical component of the brain privacy debate
not discussed here is the public’s understanding of brain
imaging and its tendency to attribute greater objectivity
and certainty to brain images than to other types of

information about the human mind (McCabe & Castel,
2008; Weisberg, Keil, Goodstein, Rawson, & Gray, 2008;
Racine, Bar-Ilan, & Illes, 2005; Dumit, 2004). This must
be taken into account when considering the social con-
sequences of brain imaging.

Whether the foregoing issues will take on real-world
relevance depends on another empirical issue: whether
brain imaging, in fact, poses any actual or foreseeable
threat to brain privacy, given the current state of the art.
The present study is a first attempt to address this issue,
and indicates that functional neuroimaging is, indeed,
already capable of delivering a modest amount of infor-
mation about personality, intelligence, and other socially
relevant psychological traits.
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