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A model is proposed for free-responding on schedules that positively reinforce an 
interresponse time of duration t with a probability u(t) that does not depend on the 
experimental history of the subject prior to the previous response. The organism is 
characterized at anypoint in time by its interresponse timedistribution, andthe learning 
process takes the form of a sequence of linear transformations on this distribution. The 
transformation corresponding to nonreinforcement increases the probability of long 
interresponse times. The transformation associated with reinforcement of an interres- 
ponse time t leads to two effects: an increase in the probability of short interresponse 
times, and an increase in the probability of interresponse times of duration approxima- 
tely t. Expressions are derived for the asymptotic interresponse time distribution I(t). 
Predictions of the model are compared with data from random-ratio, variable-interval, 
and a certain DRL-like schedule. 

Skinner (1938) bases his ingenious explanation of the superiority of fixed-ratio to 
fixed-interval response rates upon the observation that different interresponse times 
(IRT’s) can be selectively strengthened by differential reinforcement. More recently 
the influence of reinforcement contingencies upon the IRT distribution has been 
emphasized by Anger (1956), and Logan (1960) has stressed the importance of tem- 
poral response differentiation in runway experiments that are closely related to the 
free-responding situations that will be considered in this paper. 

To study the way the IRT distribution is controlled by the probabilities of reinfor- 
cement of different IRT’s it seems natural to focus attention on the class of schedules 
for which the probability u(t) that reinforcement will follow the IRT t is prescribed 
by the experimenter. That is, a function u(t) is selected by the experimenter and all 
IRT’s of duration t are reinforced with probability u(t). The term simple contingent 
schedule has often been used in the literature of mathematical learning theory to 

i This paper is based on my Stanford University Ph. D. thesis (Norman, 1964). I am grateful 
to the members of my dissertation committee: Drs. Patrick Suppes, Gordon Bower, and Samuel 
Karlin for their contributions to this research, and, more generally, to my intellectual develop- 
ment over the past four years. This research has been supported in part by the Air Force Office 
of Scientific Research under grant AFOSR 62-384. 
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describe analogous schedules in other learning situations, and this term will be used 
here. 

One example of a simple contingent schedule is the differential reinforcement of low 
rate or DRL schedule in which an IRT is reinforced if and only if it exceeds a certain 
critical duration 7, thus 

0 if 
u(t) = 1 if i 

t<T 
t > 7. 

If u(t) also vanishes for t > 7’ where T’ > r a dzgeerential reinforcement of low rate with 
limited hold or DRL LH schedule is obtained. Other simple contingent schedules are 
random-ratio (RR) where all IRT’s have the same probability p of reinforcement 
(thus u(t) = p for all t 3 0), and Millenson’s (1963) random-interval (RI) schedule 
which specifies that the time between the consumption of one reinforcement and the 
“setting up” of another be an exponential random variable with mean l/r seconds 
(u(t)= 1 -exp(- t) y as is shown in Part B of Sect. IV below). Some other types of 
“variable-ratio” and “variable-interval” schedules are sufficiently similar to RR and RI, 
respectively, that any conclusions reached about behavior under the latter schedules 
will have implications for behavior under the former. Fixed-ratio and fixed-interval 
schedules, on the other hand, are not at all like simple contingent schedules. 

To the author’s knowledge the only paper in the literature that considers the entire 
class of simple contingent schedules as such is the very recent report on the experi- 
ments of Mallott and Cumming (1964). It is hoped that Mallott’s and Cumming’s 
paper and the present theoretical paper wilI call attention to the importance of this 
class of schedules. 

It is now well established (see Kelleher, Fry, and Cook, 1959 and Sidman, 1956a, 
1956b) that organisms can adapt to DRL and DRL LH contingencies in the sense of 
developing IRT distributions with predominant mode in the neighborhood of the 
cutoff point T. Such adaptation is, however, beyond the capabilities of the simple free- 
responding models proposed by Bush and Mosteller (1951) and Estes (1950). These 
models always predict IRT frequency functions which decrease as distance from the 
origin increases. The same is true of the (in effect) pure birth models considered by 
Mueller (1950). Thus these models need be considered no further. 

I. A MODEL FOR FREE-RESPONDING ON SIMPLE 
CONTINGENT SCHEDULES OF POSITIVE REINFORCEMENT 

The model to be discussed below is arrived at by formalizing the following rather 
crude conception of the dynamics of behavior under simple contingent reinforcement: 
The entire effect of nonreinforcement following an IRT is a general decrease in the 
rate of responding. Receipt of reinforcement following an IRT of duration t results 
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in a compromise between two effects. The first of these is a tendency for the rate of 
responding to increase. The second is an augmented tendency to emit IRT’s of dura- 
tion approximately t. 

The course of acquisition is described by a sequence of transformations on the 
organism’s probabilities of making IRT’s of various durations. Clearly if different 
events such as “reinforcement of a 5-set IRT” are to have the different effects ascri- 
bed to them in the preceding paragraph there must be a different transformation 
associated with each such event. The form of these transformations must now be 
determined. Let E be any event of the type under consideration, and let TE be the 
associated transformation. Thus if P(A) is an organism’s probability of emitting an 
IRT in a Bore1 subset A of the positive half line at some point in a free-responding 
experiment, then (T,P) (A) is the new probability of such a response after the occur- 
rence of E. It is natural to consider transformations of the form 

(1) 
for some function g, of two arguments, the first a number in the unit interval and the 
second a set. It is an immediate consequence of a theorem of Blau (1961, Theorem 1) 
that the only transformations of probability measures into probability measures 
having the form (1) are averages of the identity transformation and a fixed probability 
measure PE , i.e., for some 0 < 8, < 1 and PE, and all P and A, 

CT&‘) (4 = (1 - e,> PW + W’EW 

The form of the corresponding transformation FE on distribution functions F(x) is 
obtained by taking A = (0, x): 

( W) (4 = (1 - 64 F(x) + fv&>, 

where FE(x) = PE((O, x)). 

(2) 

The first theorist to propose a learning model for a continuum of responses em- 
ploying such transformations was Suppes (1959). Most of the differences between the 
development to follow and the development in Suppes’ paper stem from the differen- 
ces in the classes of experimental situations that are considered. 

It is convenient at this point to introduce some terminology and notation. The 
latency t, of the first response will be referred to as the “first IRT.” For 7t > 2 the 
time t, between the nth response and the preceding response will be called the nth 
IRT. The reinforcement indicator random variable for the nth response will be denoted 
by k, , i.e., 

k,= :, 
I 

if the nth response is reinforced 
otherwise. (3) 

The 2n-dimensional random vector (k, , t, , k,-, , tnel , ..., k, , tl) which gives the 
entire history of IRT’s and reinforcements through the nth for an organism will be 



238 NORMAN 

denoted by s, . Finally, the conditional probability distribution of the n + 1st IRT 
given the history s, will be denoted by I,+i(t 1 s,) for n 3 0. For n = 0 this symbol 
is to be interpreted as II(t), the initial IRT distribution. 

In view of (2) the following formalization of the conception sketched in the first 
paragraph of this section will be considered. 

The decrease in rate of responding accompanying nonreinforcement of the nth 
response is represented in the model by averaging the “old” IRT distribution 
In(t 1 s,+r) with F,,(t), a distribution with very large mean, to obtain the “new” IRT 
distribution I,+i(t 1 s,). Thus 

where 0 < B,, < 1. The distribution F, may be tentatively identified with the “ape- 
rant level” IRT distribution under the prevailing experimental conditions. If respond- 
ing at operant level is conceived of as approximately a Poisson process F,, would be 
taken to be exponential. This choice would be unreasonable in so far as it is obviously 
impossible for an organism to emit arbitrarily short IRT’s in a given situation, but 
the error thus introduced should not be important in most applications. 

The dual effect of reinforcement of the nth response is represented in the model by 
averaging In(t 1 s,-i) with (1 - CC) Fl(t) + 01L(t, tn) to obtain &+r(t 1 s,), i.e., 

L+dt I sn) = (1 - 4) 4(t I LI> + 4Kl - 4 F,(t) + cW, k)l> (5) 

where 0 < C?r < 1 and 0 < u < 1. Here Fl is a distribution function with most of its 
mass near the origin, and its presence in the above formula represents the tendency 
of the organism to respond more rapidly after receipt of reinforcement. Since Fl is 
concentrated near the origin it is clear that great care must be taken in postulating the 
behavior of Fl very near the origin. This rules out an exponential distribution for the 
reason discussed above in connection with F, . A gamma distribution with, of course, 
a very small mean, would be much more appropriate. 

The distribution L( ., t,) is assumed to be unimodal with mode at t, , and its presence 
in the above formula represents the increased tendency of the organism to emit further 
IRT’s in the neighborhood of t, following reinforcement of an IRT of duration t, . 
If it is assumed that the standard deviation of L(*, s) is a measure of the organism’s 
temporal generalization in the neighborhood of S, and that Weber’s law holds for this 
measure, then the standard deviation of L(., S) is proportional to S. One family of 
distributions having all of these properties in addition to analytical convenience is the 
family 

L(t, 4 = G (f) , (6) 

where G is a unimodal distribution with mode 1. 
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The theoretical structure described by (4) and (5) together with the stipulations 
that F,, has a large mean, F1 has a small mean, and L(*, s) has mode s, will be called the 
linear free-responding model. The assumptions that F,, is exponential, F1 is gamma, and 
L satisfies (6) will be in force only where indicated below. 

The assumption that simple contingent schedules are being considered may be 
written 

P(hn = 1 1 t, = t, S+i) = u(t) for all t 2 0. (7) 

The function u(t) will be called the reinforcement function of the schedule. 

II. GENERAL THEORY OF THE ASYMPTOTIC IRT DISTRIBUTION 

A. EXISTENCE AND INTERPRETATION 

The distribution In(t j s,+i) of the nth IRT for an organism is a random variable 
since it depends upon the 2(n - 1) dimensional random variable sn-i . The expectation 

L(t) = a&(t I %-I)1 (8) 

over all possible histories s,-, can be interpreted as the distribution of the nth IRT 
for a large group of organisms behaving according to the model with the same para- 
meters and initial distribution II(t). Theorem 1 shows, among other things, that under 
very general conditions an asymptotic IRT distribution 

(9) 

exists and does not depend on II(t). 
Theorem 1 (except for the uniformity assertion) can easily be shown to follow from 

the ergodic theorem in Chapt. IV, Sect. 3 of Iosifescu (1963).2 (The latter theorem 
extends Theorem 2 of Iosifescu and Theodorescu (1965), which is restricted to models 
with finite sets of possible responses and reinforcements, to models with arbitrary 
response and reinforcement sets.) The statement concerning uniformity is a conse- 
quence of the first remark following the ergodic theorem of Chapt. III, Sect. 2 of 
Iosifescu (1963). Details of the deductions will not be presented here. 

THEOREM 1. If 0, > 0, 0, > 0, and th-ere is some interval on which F,‘(t) and 
F,,‘(t) are both positive, then for any positive integer m and any bounded measurable func- 
tions q(t), j = 1, **a, m the limit 

s Vera Rich has translated Iosifescu (1963) from the Russian. A copy of the translation may be 
obtained for $7.50 from Addis Translations, 129 Pope Street, Menlo Park, California 94025. 
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exists and does not depend on the distribution I1 , of t, . For any m and any A4 < CO 

convergence is uniform in II and in functions vj satisfying 

The existence and independence of I1 of the limit (9) follows from Theorem 1 on 
taking m = 1 and 

In fact the theorem can be shown to imply that the total variation of I - In converges 
to 0. 

Theorem 1 is extremely general, since no assumptions are made about u(t) and (Y. 
It is easy to show that the hypotheses of the theorem are actually necessary to obtain 
the conclusion of the theorem in this generality. Suppose throughout what follows 
that a = 0. If e1 = 0 (i.e., reinforcement has no effect on the organism) then for 
u(t) = 1 it is clear that In(t) = II(t) for all n, so I(t) = II(t) contradicting the assertion 
of Theorem 1 that the limit in (10) is independent of II(t). Similarly if B0 = 0 (i.e., 
nonreinforcement is ineffective) then for u(t) E 0 it is apparent that I(t) = II(t). 
Finally, if F1 and F,, are concentrated on disjoint sets S, and S, , if 0, > 0 and I!$ > 0, 
and if 

49 = :, I 
if t E s, if t E’ s, 

then it is easy to see that I(t) = F1(t) if II(t) is concentrated on S, , while I(t) = F,,(t) 
if II(t) is concentrated on S, . 

The hypothesis about the simultaneous positivity of F,,‘(t) and F,‘(t) (and the implicit 
assumption that these densities exist) will be in force throughout the rest of the paper. 
If F,, is exponential and Fi is gamma, then F,‘(t) and F,‘(t) are positive for all t > 0. 

As defined in (9) I(t) has the interpretation of an asymptotic group average IRT 
distribution. However it is a consequence of Theorem 2 below that I(t) is consistently 
estimated by the empirical IRT distributions for an individual subject. This yields an 
interpretation of I(t) in terms of a single organism’s behavior and justifies the applica- 
tion of the linear free-responding model to data from individual subjects. Some appli- 
cations of this sort are presented in Sect. IV of this paper. 

THEOREM 2. Under the hypotheses of Theorem 1, for any bounded function f  and 
any r 3 1 

lim E 
n+m ii 

Tyf (tJ 
2 

i=r 
- n s ;f  (4 W 

)I 
= 0. (12) 
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If this theorem is applied to the functionsf,(.) given by (1 l), then 

is just the empirical IRT distribution for an individual subject for the n trials starting 
at trial r, stft(s) dI(s) = 1((t), and the conclusion 

p& EKS,,&) - w>)21 = 0 

is the consistency property mentioned above. 
Theorem 2 is a law of large numbers for the random variablesf (ti), f (tz), **. where f 

is bounded. This theorem is an immediate consequence of statement (i) in Theorem 3. 
Much more refined information about the asymptotic distribution of the sums 

is given by statement (ii) of Theorem 3, which is a central limit theorem for 

ifW> j"=l. Th eorem 3 is a consequence of Theorem 1 in Chapt. IV, Sect. 4 of 
Iosifescu (1963). (The latter theorem extends Theorem 3 of Iosifescu and Theodo- 
rescu (1965) to arbitrary response and reinforcement sets.) 

THEOREM 3. Under the hypotheses of Theorem 1, for every bounded function f and 
every reinforcement function u there exists a non-negative constant aUS, which does not 
depend on I1 such that 

(i) for every r > 1 

i+? ; E [ rzlf 6) - n Jrf (t) dI(t))‘] = & , 
j=r 

and 

(ii) ;f c& # 0 then 

=-&=s” exp(-$)dr. (13) 
-co 

B. AN INTEGRAL EQUATIONFOR~(~) 

The investigation of the form of I(t) begins with the following recursive expression 
for its precursors I,(t). 
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THEOREM 4. For n > 1, 

where 

p, = P(k, = 1) = 
s m u(t) az(t), 8, = q&J = Oo(l - Pn) + 4P, 7 

and 
0 

E,(t) = (e, - 6,) cov (jr 44 dL(s I G-I), Ut I G-I)) . 

Before presenting the proof it is appropriate to point out that the term E,(t) and all 
quantities that will derive from it are to be regarded as residual terms. It will be shown 
that these terms are negligible in many cases of interest. As a start, note that for any 
random-ratio schedule u(t) z p for some constant p so 

s m u(s) dl,(s I & = P 
0 

has zero variance and E,(t) vanishes. 

PROOF. Let 

at> = u(t), uo(t) = 1 - u(t), 

K,(t, s) = (1 - a> F,(t) + @, s), and Ko(t, 4 = F,(t). 

The function uk(t) gives the probability that k, = k when t, = t. Introduction of the 
I&'S permits the compression of (4) and (5) into the single equation 

In+& I %> = (1 - h+> AL(t I h-1) + Q&Jt, tn). 
We have 

In+&) = P(t,z+l < t) = EF’(tn+l < t I 41 

= E[l,+& I a)] = E[(l - 4+,) L(t I G-I> + 4&& tn)l 

= E[E[(l - 4,) 4L(t I %-1) + 4$G&f tn) I dl 
= E[E[(l - 0,) I ~11 &(t I ~1) + EF’,,,&,(t> t,) 1 %-ill 
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However 

Thus 

2 (1 - 0,) t&(s) = (1 - 4)) (1 - 4s)) + (1 - 4) 4s) 
k=O 

= (1 - fib) + (4 - 4) 4s). 

= cov [(I - e,) + (e, - 0,) 1: 4s) a(~ I k), 40 I sn-J] 

= (e, - e,) cov 

Therefore we obtain 

1,+&t) = (1 - $, ek jmuk@) d&(s)) I,&(t) + 2 ek lrnKk& s)“k(s) din(s) + E&)x 
k=O 0 k=O 0 

which reduces to (14) upon substitution for the Kk(t, S) in terms of F,,(t), F,(t), and 

L(t, 4. 
Q.E.D. 

Letting n approach infinity in Theorem 4 an integral equation for the asymptotic 
IRT distribution I(t) is obtained. 

z(t) = Ul - p) 
e t-,(t) + (1 - a> ffF,(t) + 013 /mL(t, s) u(s) W) + + E(t), (15) 0 

where 

p = iiT p, = Irn u(s) d(s), (16) 0 

and 

e = fii e, = 8,( 1 - p) + e,p, 

E(t) = ;z E,(t). (17) 
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C. A SERIES EXPANSION OF I(t) 

If 01 is not too large the integral equation (15) can be solved by iteration, a standard 
technique in integral equation theory. The solution takes the form of an infinite series 
whichis calledaNeumann series. Though the presentation that follows is self-contained 
the reader desiring additional background in integral equation theory may wish to 
consult standard sources such as Courant and Hilbert (1953) and Tricomi (1957). 

THEOREM 5. If 6, > 0, 8, > 0, and N < e/O, sup u then 

I(t) = 40 -P) 
e F,(t) + (1 - &pl@) 

+ z (+j” j= Wk)(t, s) d [eo(l~-p)Fo(s) + (1 - 
k=l 0 

- 

where 

g:(t) = $ j,” R(t, s) d-E(s), 

qt, s) = 2 (a %j” wyt, s), 
k=O 

0 
wyt, s) = 1 

i 
if t<s 
if 

t > s, 

and 
W’l’(t, s) = L(t, s) u(s), 

Wm+l)(t, s) = jm Wnz)(t, z) d,EW)(z, s) for m > 1. 
0 

PROOF. To facilitate our work with Eq. 15 we introduce some notation: 

G(t) = ‘o(’ - p) 
B 

F,(t) + (1 - a) f+(t) + + E(t) for t>O (24) 

and 

In these terms (15) becomes 

I(t) = G(t) + b j‘= W)(t, s) d](s). 
0 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(25) 

(26) 
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This is a Fredholm equation of the second kind. We now iterate this equation. 
Suppose that for some n > 0 

W(k)(t, s) dG(s) + bn+l jr Wn+l)(t, s) dl(s). (27) 

Then substituting expression (26) for I(s) into the right side of (27) we obtain 

z(t) = G(t) + “%bk j; Wfk)(t, s) dG(s) + ZP+~ jr Wn+l)(t, x) d, (jr W’l’(x, s) d&)) 
k=l 

= G(t) + “%b” jr Wk)(t, s) dG(s) + bn+2 j; (j,” bVn+l)(t, z) d,W’l’(z, s)) dl(s) 
k=l 

= G(t) + “% bk jr Wk)(t, s) dG(s) + W2 j; Wnfz)(t, s) dl(s). 
k=l 

Since for n = 0 (27) reduces to (26), we conclude by induction that (27) is valid for 
all n 3 0. 

Now 

Suppose n > 1 and 

Then 

0 < wyt, s) =L(t, s) u(s) < u(s). 

0 < wyt, s) < (y<T u(t))“-1 u(s). 

0 < W(n+l)(t, s) = ( jm W(“)(t, z) d&z, s)) u(s) 
0 

< (sup u)“-r cs,” U(Z) d,L(z, s)) u(s) < (sup u)” U(S). 

Thus, for all n 2 1, 

Therefore, 

0 < W(n)@, s) < (sup u)“-r U(S). (28) 

0 < jm Wn+l)(t, s) d@) < (sup u)” jrn U(S) dl(s) = (sup z+ p. 
0 0 
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It follows that 

1 I(t) - G(t) - 2 b” jr 
k=l 

?Vk)(t, s) dG(s) / < bp(b sup 2~)” = 01 y b 3 sup $. 

The term on the right converges to 0 as 12 -+ cc if 

4 0 
a---ssupu<l or a<------. 

0 8, sup u 

The theorem follows upon rewriting in our previous notation and observing that 

E(t) = jm wyt, s) d&s), 
0 

since E(0) = 0. Q.E.D. 

Since the number p = jr U(S) d1(s) that determines the upper limit d = o/e, sup u 
of the interval of convergence producing 0~‘s specified by Theorem 5 is still in general 
unknown, the question arises: Is the range of convergence producing 01’s specified 
by the theorem adequate for applications of the model ? If 0,> 0i then d > 1 and 
there is no problem. If 0, < 0i then at the very least the interval 

is always allowed. But in Sets. III and IV of this paper attention will be focused on the 
case of small 0,/0i , and in that case A would often be too restrictive. However rewri- 
ting d as 

d= 
s 

m w(s) dl(s) + + + , 
0 1 

where w(s) = ~(s)/sup u may be described as the relative reinforcement availability 
function, it is easily seen that, whenever d and, a fortiori, s,” w(s) dl(s) are small, the 
organism asymptotically is not doing much responding in the region of high reinforce- 
ment availability. This means that a, which measures the organism’s capacity to 
adapt to his environment, is small. The conclusion is that if 01 is chosen sensibly (from 
a psychological point of view) the Neumann series expansion of I(t) given by Theorem 
5 will probably be available. 

In order to determine p approximately and estimate d?(t) additional assumptions 
must be made. One approach is suggested by the observation that on a random-ratio 
schedule B(t) vanishes (since E(t) does), and p, the asymptotic reinforcement pro- 
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bability which appears in the expression for I(t) in Theorem 5, is simply the constant 

value of u(t). This suggests that when supoXt u(t) - inf,,, u(t) is small 6(r) will be 

small and p can be conveniently approximated. The following theorem validates this 

intuition. 

THEOREM 6. If  0, > 0, L$ > 0, and CY < 6/6, sup u then 

Im)l G+( ‘yy80’)( 1 -or(O~18)supuj(suP~-inf4 

and 

(29) 

where 

/p-p*/ <Q(supu-infu), 

p*=infu+Q(supu-infu). 

PROOF. The second part of the theorem is trivial: 

IP-P*I =jj)4+P*bWI < sup / u(t) -p* 1 jrdl(t) < + (sup u - inf u). 

To prove the first part we note that 

s(t) = $ lim jrn R(t, S) d%(s) 
n-xc 0 

= ceO - el) lim cov 
0 n+x 

[jr u(s) dl,(s I s,-I), jr R(t, 4 dr,(s I &-I)] . (30) 

But 

1 cov [ jm u(s) dr,(s 1 sn-I), jm R(& 4 dL(s I %-I)] ( 
0 

< u [j;:(s) dI& I q-1)] 0 [jr W 4 dln(s 1 %-I)] . (31) 

Also for any random variable Y with Ml < Y < M, for some finite constants Ml 
and n/r, 

since 

u[Y] < E1’2[(Y - +(M, + J&J)7 < +(M2 - Ml), 

Thus 

I Y-+Q~,+M,)I <+(M,-MM,). 

u [jm u(s) dIn(s 1 snwl)] < + (sup u - inf U) 
0 
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and (32) 

(the latter in view of 

0 < R(t, s) < kz (a 3,” (sup 4”. 

The proof is completed by combining (30), (31), and (32). Q.E.D. 

It is clear, however, that even in the random-ratio case where p is known and s(t) 
vanishes some approximations will have to be introduced to obtain conceptually and 
computationally tractable formulas from (18). 

III. APPROXIMATIONS TO I(t) WHEN oi AND So/S, ARE SMALL 

One way to obtain simple and easily interpertable formulas from (18) is to assume 
that LY. and h = 0,/e, are small. In this section the first order Taylor expansions of I(t) 
and its moments in these variables will be obtained. In Sect. IV these formulas will be 
compared with data obtained under three different schedules of reinforcement. The 
fact that the correspondence of theory and data is respectable is taken as an indication 
of the usefulness of the small 01 and X assumptions. 

Further evidence for the small h assumption is provided by the estimates of h from 
random-ratio and variable-interval rate of responding data obtained in Parts A and B 
of Sect. IV. These estimates suggest that for these data the appropriate value of h 
is of the order of magnitude of 10-4. Intuitively, small h is a reflection of the sensiiivity 
of response rate to small changes in rate Y of reinforcement in the neighborhood of 
Y = 0. This effect is apparent in Catania and Reynold’s (1963) variable-interval data. 
By glancing ahead at Table 2 the reader can see that most of the variation in mean 
interresponse time (M) occurs in the upper lines of the table, corresponding to the 
largest values of mean interreinforcement time (I/r). The effect is obscured in Bran- 
dauer’s (1958) random-ratio data (Table 1) by the fact that his birds were not run at 
lower p values. The range of variation in M in Table 1 is comparable to that in the 
lower part of Table 2. From the vantage point of the linear free-responding model 
sensitivity of response rate to small changes in Y when Y is very small must mean that 
the effect of reinforcement is so much more powerful than the effect of nonreinforce- 
ment that only occasional reinforcement is necessary to drive response rate into the 
vicinity of the highest rate attainable under the given experimental conditions. 
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It is instructive to consider the random-ratio case first, since it is by far the simplest. 
If p = 0 it is easy to see that (18) reduces to I(t) = F,,(t), so assume henceforth that 
p > 0. The formula (18) can then be rewritten 

+ (1 - 4 g,@) s (qm)” j;wc 4 @l(S) 
k=O 

or 

I(t) = h (Yj ‘il *=oakmx) SgmL(% 4 dF,(s) + z. OIkgy(h) j;Ltk)(t, s) C,(s) 

where 

- 3 akfg+yh) j;L(k)(l, s) dF&), 
k=O 

1 
g&v = 1 + A(1 - p)/p ’ 

and Lfk) is defined in a manner analogous to IVk) (see (21) (22) and (23)) but 
with L(l)(t, S) = L(t, s). By substituting the power series representations 

g,“(X) = 2 i” ; ‘f “) (- ($$, him 
??kO 

and regrouping terms, the formula 

m -- 
f 

mL("(t,S)dFo(s) 
k+m o 

is obtained. 
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Such a formula makes up in power what it lacks in simplicity. From it approxima- 
tions to 1((t) of any order in a: and A can be obtained as well as an explicit expression 
for the error in any such approximation. Unfortunately, the distributions I(t) for 
other schedules are not as well understood. 

The first order approximation to I(t) for small OL and h and general reinforcement 
function u is given by Theorem 7. The requirement that 

s 
m U(t) dF,(t) = /Li > 0, i=O,l 
0 

corresponds to the assumption that p > 0 in the preceeding paragraphs. 

THEOREM 7. If p. > 0 and pl > 0 then 

I(t) = (1 - 01 - B)F,(t) + p,(t) + aH(t) + O((w2 + Aa) (34) 

for A > 0 and CL >, 0, where 

H(t) = ; /;L(t, s) u(s) d&(s). 

Since formulas like (34) have not appeared very frequently in the psychological 
literature, a few words about the interpretation of this formula are in order. By 
definition the formula means that there are constants B < co and b > 0 such that 

or 

1 I(t) - (1 - 01 -/3)8-,(t) -p,(t) - aH(t) I < B(c? + AZ) 

I I(t) - (1 - M - iwdt) -PO(t) - ~fw) I < qa2 + X2)1/2 

(a" + P)l'2 (37) 

for all h > 0, 013 0 and 01~ + A2 < b. Thus the error in approximating I(t) by the 
linear function 

L,(% A) = (1 - a - B)F,(t) + p-o(t) + a&) (38) 

of (Y and h not only goes to 0 as a! and h approach 0, but is actually an arbitrarily small 
proportion of (a2 + A2)lj2 if 01 and h are sufficiently small. If another linear function 
L(a, A) of 01 and h had this property, then 

lim I L(“l’ ‘) - LO(oL’ ‘) I = 0 

n .A40 (a” + A791’2 ’ 
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which, however, implies that L(ol, A) = L,(ar, A). ThusL,(ar, A) is the best linear approxi- 
mation to 1(t) in the sense that it is the only linear approximation for which the error 
goes to zero faster than (a2 + A2)lj2 as 01 and h approach 0. 

Of course to say that &,(a, A) becomes an arbitrarily good approximation to I(t) 
as 01 and h approach 0 does not imply that for particular “small” values of 01 and h 
(e.g., 0: = .l, h = .OOOl) the approximation is good, but it certainly suggests that this 
is the case. This suggestion will be followed up in Sect. IV, where L, and other 
first order approximations will be compared with experimental data. To the extent that 
the results of this analysis are encouraging, several paths toward greater refinement 
present themselves for future research: 

(a) Monte Carlo computations could be made to give information about the 
characteristics of the approximations for particular specifications of the functions 
and parameters of the model and of the reinforcement function u in which the resear- 
cher has particular interest. 

(b) Formulas for second and higher order approximations to I(t) and its moments 
could be sought. 

(c) Finally, and perhaps most fruitfully, attempts could be made to determine 
experimentally what variables control the magnitude of the contribution of temporal 
discrimination to total performance and the relative effectiveness of reinforcement and 
nonreinforcement. Not only would the results of such experiments be of great 
intrinsic interest, but they would permit an experimenter to obtain especially small 
values of 01 and A, for which the first order approximations developed here are espe- 
cially appropriate, at will. 

PROOF OF THEOREM 7. Since all of the asymptotic quantities with which we will 
work below are independent of Ii(t), we may assume, without loss of generality, that 

A(t) = F,(t)* 
Let sequences {a,(~,-~)} and {b,(s,-J} be defined recursively as follows: 

for 71 = 1, 

a&-,) = a, = 0 and b&,-J = 6, = 1, 

while for 71 > 1 

(39) 

and 

It is easily shown by induction that 

I$ 1 sn-l) = b&-l)F&) + %(& (1 - 4FlW + ~KA(t I d (41) 

480-z 
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for n > 1, where 

(42) 

Also from (40) it follows that, for all n > 1 

u,+,(s,) + b,+&,) = (1 - &J (%(Sn-1) + Mn-1)) + 4%. 

But by (39) a, + b, = 1. Thus by induction it follows that 

%(Ll) + h&,-l) = 1 

for all 12 3 1. Therefore, (41) can be rewritten 

In(t ] snel) = b,(s,-l)F&) + (1 - b&-l)) (1 - 4FlP) + sz(t I sn-1). (43) 

Also, it is easily verified that the solution to the recursion (40) for a,(~,-~) satisfying 
the initial condition (39) is 

1 - bn(sn-l) = un(sn-l) = z ( fj (1 - hj,) k,k . 
a=1 j=v+l 

(4) 
The formulas (43) and (44) will be the basis of much of our later work. 

For any bounded functions f we obtain from (43) 

n-1 n-1 

+ o! 2 ( n (1 - ekj)) h,b /rf(t) 4w, t,). 
v=l j=v+l 

(45) 

Applying this equality to u(t) and noting that the last term is bounded above and below 
by cL(1 - b&,-J) sup f and ~(1 - b&-r)) inf f, respectively, we obtain 

w*(~,(s,-~)) = b&,-,) p. + (1 - hdd) ((1 - 4 h + 01 inf 4 

< 
s 

O" u(t) &(t I G-1) < b&n-,) PO + (1 - b%(S?+l)) ((1 - 4 CL1 + O1 sup u) 
0 

= w*(bL(Ll)). (46) 
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Taking expectations on both sides we find that 

@,(dl p. + (1 - Whb)l) ((1 - 4~ 1 + 01 inf 4 < P, 

G w&92-1)1 PO + (1 - 43&n-1)1) ((1 - 4 Pl + a SUP 4 
or 

E[b,(s,-l)] (po - p1) - a(1 - q~,(LJ) (PI - inf4 G P7L - cdl 

< E[~n(L1)1 (PO - Pl) + 41 - Jm&-dl) (sup u - CLlb 

From this and inf IJ < pi < SUP U, i = 1, 2, it follows that 

/ p, - p1 I < (sup u - inf U) ((1 - a) E[b,(s&] + a), 

so that, taking upper limits on both sides, the important relation 

1 p - pl ) < (sup u - inf u) ((1 - a) FE E[b,(s&] + a) 

is obtained. 
By means of (44), (45) can be rewritten in the form 

(47) 

But the third term on the right is bounded in absolute value by ~~(supf - inff). 
Using this fact to obtain an estimate of the second term on the right in (49), which 
equation is obtained from (48) by Minkowski’s inequality, 

(49) 

we find that 
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Taking upper limits on both sides leads to the conclusion that 

;i u [I f(t) &(t 1 snel)] < (supf - inff) (5 4Uh-Al + 4 (50) 
0 

for any bounded functionf(t). If (50) is applied twice, once tof(t) = u(t) and once 
tof(s) = R(t, s), and the results are combined with (30) and (31), the important for- 
mula 

/ B(t) / < ’ l - h ’ (sup tl - inf u) T- 
p + (1 - p) h 1 - 01 sup u/(p + (1 - p) h) (Ez a[~?L(s7+1)] + a)2 (51) 

is obtained. 
To make further progress we must have estimates of the upper limits of the moments 

of the stochastic process (b,(s,-J} that appear on the right in (47) and (51). Referring 
back to (40) we see that this process satisfies 

P(bn+l(sn) = (1 - es) b&,-i) + 00 I S,-1) = P(& = 0 I %-1) = 1 - Jr n(t) G(r I L1) 

(52) 
and 

P(bn+l(sn) = (1 - 8,) b&-l) I sn-l) = P(h = 1 I $2-1) = jr u(t) aL(t I Ll). (53) 

As h approaches 0 the “up” operator becomes weak in comparison with the “down” 
operator, so it is to be expected that the random variables b,(s,-,) for n large will 
concentrate at 0 as h approaches 0. We will now study the rate at which this concen- 
tration occurs. 

We write 

E[b:+&,)] = E[(b&,-1) + @,+1(&J - ULIYI 

= E[hn2(Sn-I)] + 2.q~&-l) (&+1(&a) - ~&n-d)1 

+ -q~,+&?J - b&n-IN21 
= E[b,2(S,-J] + 2E[b,(S,-1) q%&J - u%L-*I I %-111 

+ &?q(~,+,(hJ - wn-1N2 I dl* (54) 
But 

Jq(bL+1(4 - wn-lNk I L11 
= [e,(l - b,(S,-,))I% (1 - P(K, = 1 I S+J) + [- v&-,)1” w2 = 1 I &l-J. (55) 
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Thus, using the bounds for P(K, = 1 1 s,& given by (46), we obtain from (54) and 
(55) 

E[&(s,)l < mt(LI)l 
+ 2E[b&-1) &( 1 - b&,-I)) (1 - ~*(~,(%-I))) - 4&+-I) ~*hz(~n4)1 

+ qeoy 1 - b,(S,-,))z (1 - w*@&-1))) + 42&32(LI) w*v4z&.1N1 
= q6,2(~,-~) (1 - 2e1w+&(h-J) + 42W*(wnm 
+ 2qbn(+) e,(l - wn-d) (1 - ~*(a4)1 

But 

+ qe,yl - ~n(~n-1))2 (1 - ~+4ud)>i. 

4[2w,(~n(~n-l)) - 4w*hdd)i 
= e,[6,(~,~,) PO(2 - e,) + (1 - b,(+)) ((1 - 01) ~42 - 4) + 42 inf u - 4 sup 4) 

3 ~,p,(~,-,) p. + (1 - wn-d + 1-4 

> elmin(po,+j 

for all 01 < &A, sup ?I, and 

Therefore, 

inf zl < w*(b,(s,J) < sup 24. 

~P~+hJl G (1 - 4 min (p. , +j j Wh2(~n-IN 

+ 2( 1 - inf U) eoq6n(sn~l)] + (1 - inf 24) eo2 

< (1 - 4 min (pop Fjj Wn2L)1 

+ 2(1 - inf U) eow2[6ny~,-l)] + (1 - inf 24) eo2. 

Taking upper limits on both sides, we obtain 

or 

+ 2( 1 - inf 24) e,(E E[b,2(~,-1)])1/2 + (1 - inf 24) eo2 

B1min(~or~)i&E[6,2(~~-l)] 

< 2(1 - inf u) eo(Gj&q6n2(sn-1)-j)1/2 + (1 - inf 24) e,2. 
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Division by XV, min (pO , ,~,/2) > 0 yields 

which implies that 

where K is the unique positive root of the quadratic equation 

- - 
x2 = 2 ( 1 min infu ) (PO CLIP) x+ , ( 1 min infu 1 64 9~1/2) * 

(56) 

(57) 

It follows that 

and 

tz -mkz-111 = w 

uniformly in 01 for 01 sufficiently small. 
Combining (59) with (47) we obtain 

p = p1 + O((a2 + P)l’2). 

This in turn implies that 

11 --hl (sup u - inf u) 1 
p+(l -P)hl --supu/(p+(l -P)h) 

-+-(sup24 -infu) 
Pl 

(59) 

(60) 

as 01 and h approach 0. Consequently the term on the left is bounded when (a2 + X2)1/2 
is sufficiently small. Therefore, (58) and (51) yield 

a(t) = O(a2 + AZ). (61) 

We now consider the other terms in the fornnda (18). Clearly 

2 (a +)k 1; W(k)@, s) d (8,(l 8- p)F,,(s) + (1 - a) +%i(s)) = 0(a2) 
k-2 

uniformly in h when h is sufficiently small. Also, 

elp 1 -= 
B 

1 +x(Y) 

=1--A $2 
( 1 + 0(X2) 

= 1 - h (d) + O(a2 + F). 
Pl 



APPROACH TO FREE RESPONDING 257 

Therefore, 

=A (+qFo(t) + (1 - U -A++,(t) 

+ 01; 1; wyt, s) dF,(s) + O(a2 + AZ). 

Q.E.D. 

The formula (34) shows that, for small cv and A, I(t) is approximately a weighted 

average of the fast responding distribution Fl , the slow responding distribution F, , 
and the distribution H. To get some feeling for H, consider its density h = H’, 
writing it as 

i %t, 4 4s)fds) ds 
h(t) = O 

s 

m 

’ 44 fiW ds 
0 

where 

Qt, s) = $(I, s) and fi = F,‘. 

For fixed s, c!‘( ., s) has been assumed to be a density with most of its mass around s. It 
follows that, if l”,Qt, s) ds < CO for some t, then 

@, .) 

s 
mt(t, s) ds 
0 

is a density with most of its mass around t. Thus if u(s) fi(s) is temperate (i.e., has small 
variation) in the vicinity of t, it follows that 

h(t) = 
lrn@, 4 ds 

I 

ooo 
Irn 4s)f&) 46 s> h 

0 

44 fi(S) ds s “Qt, s) ds 
0 0 

s 
-?(t, s) ds 

2 0 - 

I m +)fi(s) ds 
Wf1(4* 

0 



258 NORMAN 

Under the assumption (6) 

@, s) = G’ (+) f , 

so that 

jr&, s) ds = jr G’ c+) f = jr G’(z) $ G 1, 

since G’ has most of its mass around 1. Thus the extremely crude approximation 

j+) + 
s 
m4t)flw 4s) fl(S) ds 
0 

is obtained, From this it can be seen that large values of u(t) representing regions of 
high reinforcement availability are reflected in large values of h(t). Thus the measure 
dH has a tendency to concentrate in regions of high reinforcement availability. It may 
be described as an adaptive component of the asymptotic IRT measure 

dIA(l -a-/3)dFI+/3dFo+cdH. 

In the case L(t, S) = G(t/s), where 

O” G(m) = 
s 

xm dG(x) < co, 
0 

the mth moment of L( *, s) is given by 

Thus 

s 
m tm d&t, s) = G(“‘s”. 
0 

s 
m t” dH(t) = Gtnz) 

s 
m s’%(s) dF,(s) 
aa 

0 

s 44 d&(s) 
0 

In view of this Theorem 7 suggests the following proposition. 

THEOREM 8. If 

PO > 09 I-Q > 0, -W, s) = G (f) , 

G’“’ = s * x”” dG(x) < co, and I@” = x” dF,(x) < 03, i= I,2 
0 
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then 

Mtm’ = (1 - 01 - p) Mjm) + ,L’~M;~) + aGtrn)Ntm) + O((Y~ + h2), (63) 

where 

M(m) = 
f 

m tm dl(t) and pn) = s 
O” s”u(s) d&(s) 
oa . 

0 

s 44 dF,(4 
0 

In the case where u(t) vanishes for t sufficiently large, Theorem 8 can be proved by a 
straightforward modification of the proof of Theorem 7, which will not be presented 
here. Given an arbitrary schedule u(t), consider approximating schedules z+(t) which 

vanish for t sufficiently large, defined by 

1 u(t) if 
f+(t) = () 

t<r 
if t > r. 

Just as it is clear that the performance obtained from an organism under z+ will 

converge to that obtained under u as r approaches infinity, it is apparent that formulas 
obtained in the linear free-responding model for ur will go over into the corresponding 
formulas for u in the limit as I’ approaches infinity. Thus (63) holds for u, and Theo- 

rem 8 may be regarded as proved. 
Theorem 8 and the assumption G(l) e 1 yield the following approximation to the 

asymptotic mean IRT valid for small 01 and h: 

M&(1 -CL-/3)M,+/lM,+odv (64) 

where all upper l’s have been suppressed. This approximation will be used in the 
first two parts of Sect. IV. 

IV. APPLICATIONS 

Specialization of (64) to random ratio schedules leads directly to Eq. 65 below, which 
expresses asymptotic mean IRT (M) as a linear function of the mean ratio I/p of 
the schedule. When (64) is applied to random interval schedules with small y  the 
formula (67), which expresses M as a linear function of the mean interreinforcement 
interval l/y, is obtained. Thus in both cases the linear free-responding model predicts 

that M is approximately a linear function of a natural measure of infrequency of 
reinforcement. Data relevant to these predictions are discussed in Parts A and B 
below. 

In Part C, as an illustration of the use of formula (34), a case is considered in which 
a bimodal asymptotic IRT distribution is predicted. 
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A. RANDOM-RATIO SCHEDULES OF REINFORCEMENT 

The random-ratio schedule of reinforcement with reinforcement probability p 
is the simple contingent schedule with u(t) = p. Clearly N = Mi for this 
schedule so the small 01, small h, s,” tdG(t) + 1 formula (64) for the asymptotic mean 
IRT reduces in the present case to 

Denoting h(Ms - &!r) by p and Mr - (M, - Ml) h by 7 yields 

as the function giving the mean asymptotic IRT for various values ofp, the probability 
that any given response will be reinforced. 

Obviously M decreases as p increases-the organism is supposed to speed up as he 
is reinforced more frequently. This was not observed in Brandauer’s (1958) experiment 
for moderate and large values of p. Mean IRT’s for all three of his birds decreased 
substantially as p was decreased from 1 to .l and decreased a bit further when p was 
further decreased from .I to .02. This might be attributable to a disruptive effect 
of reinforcement upon performance of this sort-reinforcement breaks the momentum 
of behavior, so to speak-and this affects response rate noticeably when reinforcement 
occurs frequently. However, such complications are not taken account of by the 
linear free-responding model, so the model will only be applied to the extreme lower 
range of p values. Sufficient data from this lower range are available from Pigeons 14 
and 15 in Brandauer’s experiment .3 These data are presented in Table 1 along with 
corresponding predictions of the model. The parameter estimates @ and f given in 
this table have been obtained for each bird by the method of least squares. On the 
whole it is felt that Table 1 shows fair agreement between the data and the predicted 
linear relation (65). 

s See Brandauer (1958, Table 2, p. 25). For Pigeon 17, the mean IRT declined slightly when p 
was reduced from .02 to .Ol and only increased when p was dropped further to ,005. No p values 
below .005 were tested for this bird. In order to check the reliability of the rate data, some rates 
were redetermined some time after the first determination. The agreement between the two 
rates thus obtained and reported in Brandauer’s Table 2 was good. The mean IRT’s reported 
in Table 1 above are all first determinations. 
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TABLE I 

OBSERVED (0) AND PREDICTED& (P) Mm IRT’s IN SECONDS AS A 
FUNCTION OF l/p FOR BFLANDATJER’S EXPERIMENT 

UP 

Bird 

14 15 

0 P 0 P 

599 b .30 .33 

400 .46 .48 .34 .29 

200 .46 A0 .23 .24 

100 .37 .37 .22 .22 

50 .31 .35 .21 .21 

a From Eq. 65 with 9, lo3 fi equal .328, .377 and .203, .211 for Birds 14 and 15, respectively. 
b Bird 14 was not run at l/p = 599. 

Estimates of 1M, obtained from the formula B1 = +j + @, are .328 and ,203 for 
Birds 14 and 15, respectively. Assuming that for each bird 10 set < J&, - &fl < 100 
set the following bounds for h = &j& are obtained by substituting $ for p in the 

equation X = p/(M,, - Ml): 

Bird 14: ,317 x 10-5 < h < .377 x 10-4 

Bird 15: .211 x 10-S < x < .211 x 10-4. 

B. RANDOM-INTERVAL SCHEDULESOFREINFORCEMENT 

Millenson (1963) described a reinforcement programming apparatus such that the 

nth response reinforced is the first response which occurs T, seconds or more after 
the tl - 1st reinforcement, where {T,) is a sequence of independent random variables 
with a common exponential distribution FT(t) = 1 - e--yt. Millenson called this a 
random-interval schedule, and this term will be used here. It will now be shown that 

the random-interval schedule is a simple contingent schedule with reinforcement 
function u(t) = 1 - e+. 

Implicit in the definition of this schedule is the assumption that 

P(k, = 0 1 tl = t) = P(T, > t) = e+. 
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Suppose now that 11 > 1 and that s,+i is a history with k,-r = 0, ***, k,.-r = 0, 

?&l-l 

k,-l-1 = 1, z kj = m and tnq = t,*-, , ***, tn-k = t,*-lc. 
j=l 

Then 

P(k, = 0 / t, = t & s,+*) = p(T,+I > t + t,*-, + .a. + t;-k 1 %+, 

= P( T,+l > t) = ct. 
This proves the assertion. 

The small 01, small A, r,” tdG(t) + 1 f ormula (64) for the asymptotic mean IRT 
specializes in this case to 

cc 

M~(l -a-/9)M1+pM,fD 
s 

s( I - e-Ys) c@,(s) 
O 

s 
- e-q D,(s) ’ 

where 

or 

pr- l-Plh and 
Pl 

p1 = 
i 

p (1 - P) @i(S) 

I 
s m s( 1 - e-Ys) dFi(s) 

Me [Iv,-((MO-MJh]$ 

I 

; -Ml a 
(1 - e-YS) C,(s) 

0 I 

+m l 

s 

(MO - Ml) A* 035) 
(1 - e--Ys) dF,(s) o 

Interest will center below around the case in which y, the rate of reinforcement, 
is very small. Thus a small y approximation to the above approximation will be 
developed. 

By Taylor’s theorem 1 - e-yS = ys + +, s) y2s2, where 1 +, s) 1 < i. Therefore, 

Jr (1 - e-78) dF,(s) = Y 1: s dF,(s) + s(y) ya 1: S2 dFi(S), 

where 
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and 

jy s( 1 - e-r*) dF,(s) = y 1: 9 O,(s) + v(y) y2 1: s3 dFI(s), 

where 1 v(y) 1 < 8. Thus for small y 

i 

m  

s( 1 - e-y8) dF,(s) 
s 

m s2 d&(s) 

jf (1 - e-y”) dF,(s) + /r s S,(S) ’ 

so that the second term in the expression (66) for M is approximately 

Assuming, to get some idea of the order of magnitude of the term in brackets, that 
Fr is the famma distribution 

~~(2) = j: & (ax)+-l cao dx, 

where a > 0, Y  > 1, it follows that this term is equal to 

But it has been assumed that Ml is small, and that c1 is small. Thus CXM, is very small, 
and the quantity 

jr s2 dF,(s) - (jr s dF,(sl)2 

i 
a 

s 
m 

s @l(s) 
0 

which CXM, dominates will thus be neglected in all further calculations. 
Next note that 

[Jm (1 - e-7”) dF,(s)]-’ = [y c s dF,(s) + S(y) y2 1: s2 dF,(s)]-’ - [Y Jr s dF,(s)]-’ 
0 
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as y---f 0. It follows that for small y the following approximation to the asymptotic 
mean IRT holds: 

M&v+& 

where 
Y (67) 

v=M,-(M,,-MJh and zu=~(M,,-Ml)X 
1 

so that 

&+A 
l-w 

and (MO-M,)X=s. (68) 

There do not seem to be any data in the literature on rates of responding on ran- 
dom-interval schedules as a function of y. However data on rates of responding on 
similar “variable-interval” schedules have recently been reported by Catania and 
Reynolds (1963). In their schedule of food reinforcement the sequence {T,} was 
deterministic and periodic with period 15. The phase of this sequence was varied from 
experimental session to experimental session. The values of the T, were the first 15 
non-negative integer multiples of a constant number T of seconds. Different rates of 
reinforcement were obtained by varying T. A cycle of T,/T values was 14, 8, 11,6, 5, 9, 
2, 13,7, 1, 12,4,10,0,3. Catania and Reynold’s pigeons would not have been expected 
to have behaved much differently had {T,} b een a sequence of independent random 

TABLE 2 

OBSERVED (0) AND PREDICTED& (P) MEAN IRT’s IN SECONDS AS A 
FUNCTION OF l/y FOR CATANIA AND REYNOLD’S EXPERIMENT 

Bird 

l/r 64 118 121 129 278 279 281 
___ ___ ____ ___ _____ 

0 P 0 P 0 P 0 P 0 P 0 P 

427 b b 1.71 1.86 1.46 1.38 2.07 2.08 1.36 1.36 
323 1.43 1.41 b b b b b 

216 b b 1.71 1.35 .90 1.06 1.54 1.48 b 
108 .70 .77 3.00 3.24 .94 1.09 .a4 .89 1.08 1.17 b 
45.5 .60 .59 2.86 2.21 .97 .94 .80 .80 .97 .99 .96 .96 
23.5 .55 .53 1.97 1.85 .96 .89 .82 .76 .98 .92 .95 .93 
12 .51 .49 1.13 1.66 .71 .86 .80 .75 .88 .a9 .90 .92 

a From Eq. 67 with fi, lo* a equal .456, .294; 1.460, 1.648; .833, .240; .728, .152; 856, .287; 
.907, .107 for Birds 118, 121, 129, 278, 279, and 281, respectively. 

b These bird-schedule combinations were not run. 
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variables all uniformly distributed on [0, 1471; thus the asserted “similarity” to 

Millenson’s schedule. Going one step further it will be assumed that the difference 
between uniform and exponential distributions with the same mean 77 = I/y is of 
little importance as far as the rate of responding problem is concerned, and the mean 

IRT formula (67) will thus be applied to Catania and Reynold’s birds. Comparsions of 
theory and data for the six pigeons appear in Table 2.4 The least squares estimates 
8 and B given in this table were obtained separately for each bird. Clearly the data 
in Table 2 conform rather well to the predicted linear relation (67). 

The quantity Ml was estimated by means of the first formula in (68). The values 
.458, 1.485, .835, .729, .858, and .908 were obtained for Birds 118, 121, 129,278,279, 
and 281, respectively. The quantity (A& - A4,) h was estimated by the second for- 
mula in (68), and the bounds for h given below were obtained from these estimates by 

supposing that 10 set < MO - Ml < 100 set: 

Bird 118: .I35 x 10-4 <A < .135 x 10-3 

Bird 121: .245 x 1O-3 < h < .245 x 1O-2 

Bird 129: .200 x 10-4 < x < .200 x IO-3 

Bird 278: .lll x 10-4 <A < .lll x 10-a 

Bird 279: .246 x 1O-4 < h < .246 x 1O-3 

Bird 281: .971 x 10-5 < A < .971 x 10-4. 

C. SCHEDULES THAT DIFFERENTIALLY REINFORCE Low RATES OF RESPONDING 

Qualitatively speaking it is clear that an organism behaving according to the linear 
free-responding model can adapt at least fairly well to DRL contingencies. However, 

for the model to predict the extremes of temporal discrimination often observed on 
DRL schedules moderate or large values of 01 will plainly be required. Thus the 
approximation to 1(t) given by the first three terms on the right in (34) is in some 
measure inappropriate. Since part of the second order term in (34) is contributed by 

s(t), Theorem 6 suggests that this residue will.be made smaller if DRL-like schedu- 
les are considered for which sup u - inf u is less than 1, the value of this difference 
associated with standard DRL. 

Norman (1964) has collected data from a pigeon pecking a key to obtain a 3-set 
presentation of mixed grains on the simple contingent schedules with reinforcement 

functions 

up(t) = 1; t < 6 set 
t > 6 set, 

4 Six of the 31 data points in this table are averages over two measurements widely spaced in 
time. 



266 NORMAN 

where p = 1, .7, and .4.5 The bird was maintained at a weight between 75 and 80% 
of its ad libitum weight. The lengths of the experimental sessions, which usually 
occurred daily, were adjusted so that the bulk of the bird’s daily ration of food was 
received as reinforcement for key pecking. The rest of this ration was given soon after 
the experimental session. The histogram in Fig. 1 presents the IRT densities for 
2-set blocks from 3 sessions with p = .4. IRT’s after a reinforced response were timed 
from the end of food presentation. The total number of IRT’s represented is 502. 
Previously the bird had had 15 sessions with p = 1, 7 sessions with p = .7, and 4 
sessions with p = .4, in that order. Figure 1 also presents the density obtained from 
(34) by disregarding the residual term on the right, differentiating what remains, and 
taking 

fl(t) = 4teczt, fo(t) = A e-(1/15)t, 

Qt, s) = $(t. s) = 
3 

T if 
$<“<I 

s 
0 otherwise, 

p=(-&---l)A=b, and !2 Q:=-, 
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FIG. 1. Observed and predicted IRT densities for a pigeon for 3 consecutive daily sessions 
on the simple contingent schedule with reinforcement function u.4. Heights of blocks with 
solid borders give halved proportions of observed IRT’s in the corresponding 2-set intervals, 
so that the areas within the blocks give the proportions proper. Dots give values of the asymptotic 
IRT density predicted by the linear free-responding model. 

s I wish to thank Dr. Gordon Bower for the use of the laboratory in which this experiment was 
conducted. Similar schedules have been considered by Mallott and Cumming (1964). 
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These choices were made by trial and error and, particularly in the case of k’(t, s), on 
the basis of ease of computation. The density h(t) corresponding to the above choice 
offi andk’((t, S) is easily shown to be 

e-12((1/7)t-1) _ e-12((1/5)t-1) if 7<t 

12( (l/5) t-1 1 if 5<t<7 

if t <5. 

The value of h corresponding to the above choice of /3 is approximately .8 x 10-5. 
The results presented in Fig. 1 are regarded as encouraging. Both the empirical 

and predicted densities are bimodal. Though the quantitative correspondence of 
observation and theory is not impressively close, a really good fit was not to be expected 
because of the rough and ready manner in which the theoretical density was obtained. 
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