A CENTRAL LIMIT THEOREM FOR MARKOV PROCESSES
THAT MOVE BY SMALL STEPS

BY M. FRANK NORMAN

University of Pennsylvania

We consider a family \(X_n^\theta \) of discrete-time Markov processes indexed by a positive "step-size" parameter \(\theta \). The conditional expectations of \(\Delta X_n^\theta \), \(\Delta X_n^\theta \), and \(\Delta X_n^\theta \), given \(X_n^\theta \), are of the order of magnitude of \(\theta \), \(\theta^2 \), and \(\theta^3 \), respectively. Previous work has shown that there are functions \(f \) and \(g \) such that \((X_n^\theta - f(n\theta))/\theta \) is asymptotically normally distributed, with mean 0 and variance \(g(t) \), as \(\theta \to 0 \) and \(n\theta \to t < \infty \). The present paper extends this result to \(t = \infty \). The theory is illustrated by an application to the Wright-Fisher model for changes in gene frequency.

1. Introduction and overview. Let \(J \) be a bounded set of positive numbers with infimum 0. For every \(\theta \in J \), let \(\{X_n^\theta\}_{n \geq 0} \) be a Markov process with stationary transition probabilities in a Borel subset \(I_\theta \) of the real line \(R \). The parameter \(\theta \) is an index of the magnitude of \(\Delta X_n^\theta = X_{n+1}^\theta - X_n^\theta \). We will be concerned with the asymptotic behavior of the distribution of \(X_n^\theta \) as \(n \to \infty \) and \(\theta \to 0 \).

The following assumptions, or their higher dimensional analogs, are in force throughout the paper:

\[
E(\Delta X_n^\theta | X_n^\theta = x) = \theta w(x) + O(\theta^2)
\]

\[
\text{Var}(\Delta X_n^\theta | X_n^\theta = x) = \theta^3 s(x) + o(\theta^3)
\]

\[
E(|\Delta X_n^\theta|^3 | X_n^\theta = x) = O(\theta^3),
\]

uniformly over \(x \in I_\theta \). Thus the error terms in (1.1) and (1.2) satisfy

\[
\sup_{\theta \in J, x \in I_\theta} |O(\theta^3)|/\theta^2 < \infty
\]

and

\[
\sup_{x \in I_\theta} |o(\theta^3)|/\theta^2 \to 0
\]

as \(\theta \to 0 \). Let \(I \) be the closed convex hull of \(\bigcup_{\theta \in J} I_\theta \). We assume that \(I_\theta \) approximates \(I \) as \(\theta \to 0 \) in the sense that, for any \(x \in I \),

\[
\inf_{y \in I_\theta} |y - x| \to 0
\]

as \(\theta \to 0 \). The functions \(w \) and \(s \) are defined throughout \(I \), \(s \) is Lipschitz, and \(w \) has a bounded Lipschitz derivative.

Under these assumptions the differential equations

\[
f'(t) = w(f(t))
\]

and

\[
g'(t) = 2w(f(t))g(t) + s(f(t))
\]
have unique solutions $f(t) = f(t, x)$ and $g(t) = g(t, x)$ with $f(0) = x$ and $g(0) = 0$, where x is an arbitrary point of I. Suppose that $x_\theta \in I_\theta$ and $X_0^\theta = x_\theta$ a.s., and let

$$Z_n^\theta = (X_n^\theta - f(n\theta, x_\theta))/\theta^1.$$

Let $L(Z)$ be the distribution of a random variable Z, and let $\mathcal{N}(\mu, \sigma^2)$ be the normal distribution with mean μ and variance σ^2. It has been established previously ([6] Theorem 8.1.1) that

$$(1.5) \quad L(Z_n^\theta) \to \mathcal{N}(0, g(t, x))$$

as $\theta \to 0$, $x_\theta \to x$, and $n\theta \to t < \infty$. Moreover, it can be shown that the distribution over $C[0, T]$ of the random polygonal line Z^θ with vertices $Z^\theta(n\theta) = Z_n^\theta$ converges weakly to the distribution of the diffusion Z satisfying the stochastic differential equation

$$dZ(t) = w'(f(t))Z(t)\, dt + s(f(t))^{1/2}\, dB(t)$$

and the initial condition $Z(0) = 0$ a.s., where B is Brownian motion. Weak convergence theorems of this type have been established in similar contexts by Rosén [9] and Kurtz [4].

These results are the background for the present study. We shall consider the limit of $L(Z_n^\theta)$ as $\theta \to 0$ and $n\theta \to \infty$ under certain additional assumptions. Our main project is to prove the following theorem, which was announced in ([8] Theorem 3.2(ii)).

Theorem 1. Suppose that I is bounded, w has a unique zero λ, and $w'(\lambda) < 0$. Then

$$(1.6) \quad L(Z_n^\theta) \to \mathcal{N}(0, g(\infty))$$

as $\theta \to 0$ and $n\theta \to \infty$, where

$$g(\infty) = \lim_{t \to \infty} g(t, x) = s(\lambda)/2|w'(\lambda)|.$$

The limiting process in Theorem 1 places no constraint on x_θ. This implies that (1.6) holds uniformly over x_θ in the following sense. Let d be a metric (or pseudometric) on probability distributions over R, such that $d(L_n, L) \to 0$ whenever $L_n \to L$ weakly. Then

$$\sup_{x_\theta \in I_\theta} d(L(Z_n^\theta), \mathcal{N}(0, g(\infty))) \to 0$$

as $\theta \to 0$ and $n\theta \to \infty$. Proceeding further in this direction, we may combine (1.5) with Theorem 1 to obtain the rather striking conclusion that

$$(1.7) \quad \sup_{n \geq 0, \theta \in I_\theta} D(n, \theta, x_\theta) \to 0$$

as $\theta \to 0$, where

$$D(n, \theta, x_\theta) = d(L(Z_n^\theta), \mathcal{N}(0, g(n\theta, x_\theta))).$$

For if (1.7) were not true, there would be a $c > 0$ and sequences θ_k, n_k, and
$x_k \in I_{\theta_k}$ such that $\theta_k \to 0$ as $k \to \infty$, but
\begin{equation}
D(n_k, \theta_k, x_k) \geq c
\end{equation}
for all $k \geq 1$. We could, moreover, choose these sequences in such a way that $n_k \theta_k \to t \leq \infty$ and $x_k \to x$. It follows from (1.5) and (1.6) that $\mathcal{L}(Z_n^\theta) \to \mathcal{N}(0, g(t, x))$ as $k \to \infty$, where $\theta = \theta_k$, $n = n_k$, and $g(\infty, x) = \lim_{t \to \infty} g(t, x)$. Furthermore, it can be shown that g is continuous over $[0, \infty] \times I$, so $\mathcal{N}(0, g(n_k \theta_k, x_k)) \to \mathcal{N}(0, g(t, x))$. Therefore, by the triangle inequality, $D(n_k, \theta_k, x_k) \to 0$ as $k \to \infty$, contradicting (1.8).

Another corollary of Theorem 1 is obtained by permitting θ to approach 0 after $n \to \infty$. Suppose that $\mathcal{L}(X_n^{\theta})$ converges weakly as $n \to \infty$, for every fixed θ. Let $\mathcal{L}(\theta)$ be the corresponding limit of $\mathcal{L}(Z_n^\theta)$, or, equivalently, of $\mathcal{L}(z_n^{\theta})$, where
\begin{equation}
z_n^{\theta} = (X_n^{\theta} - \lambda)/\theta
\end{equation}
($f(t) \to \lambda$ as $t \to \infty$). It follows easily from (1.6) that
\begin{equation}
\mathcal{L}(\theta) \to \mathcal{N}(0, g(\infty))
\end{equation}
as $\theta \to 0$. Some special results of this type were established in [5]. It is also a consequence of Theorem 1 that (1.9) holds for an arbitrary family $\mathcal{L}(\theta)$ of stationary distributions of z_n^{θ}. This implies Part B of Theorem 10.1.1(i) of [6].

The proof of Theorem 1 is given in Sections 2 and 3. Section 4 presents an application to the Wright–Fisher model for the evolution of gene frequency under the influence of mutation, selection, and random drift. In that context, $\theta = (2N)^{-i}$, where N is the population size, and the function f is the classical deterministic approximation to gene frequency for very large populations (see [2] Section 2.3). The results (1.6) and (1.7), which relate to the distribution of the error of this approximation, appear to be new even for this much studied model.

Section 5 gives a multidimensional analog of Theorem 1, and an illustrative application to a mathematical learning model.

2. **Conditional moments of ΔZ_n^{θ}.** A basic component of the proof of Theorem 1 is Lemma 1.

Lemma 1. Under the hypotheses of Theorem 1, $E((Z_n^{\theta})^5)$ is bounded over all $\theta \in J$, $x_\theta \in I_\theta$, and $n \geq 0$.

This result follows immediately from Theorem 3.2(i) of [8]. The latter theorem assumes that J is an interval and $I_\theta = I$ for all θ, but these assumptions are not used in the proof. It emerges in the course of the proof that, for some $K < \infty$ and $\alpha > 0$,
\begin{equation}
|f(t, x) - \lambda| \leq Ke^{-at}
\end{equation}
for all $x \in I$ and $t \geq 0$. Since w' and s satisfy Lipschitz conditions, we have
\begin{equation}
|w'(f(t, x)) - w'(\lambda)| \leq Ke^{-at}
\end{equation}
and
\begin{equation}
|s(f(t, x)) - s(\lambda)| \leq Ke^{-at}
\end{equation}
for suitable new constants \(K \).

Henceforth we suppress the \(\theta \) superscript on \(Z_n^\theta \), and let \(\nu_n = f(n\theta, x_\theta) \). The purpose of this section is to establish Lemma 2.

Lemma 2.
\begin{align}
E(\Delta Z_n \mid Z_n) &= \theta w'(\nu_n)Z_n + o(\theta) \\
E((\Delta Z_n)^2 \mid Z_n) &= \theta s(\nu_n) + o(\theta) \\
E(|\Delta Z_n|^3 \mid Z_n) &= o(\theta),
\end{align}
where the quantities \(o(\theta) \) satisfy \(E(|o(\theta)|)/\theta \to 0 \) as \(\theta \to 0 \), uniformly over \(x_\theta \in I_\theta \) and \(n \geq 0 \).

Proof. Since \(w \) and \(w' \) are bounded, \(f''(t) = w'(f(t))w(f(t)) \)
is too. Thus
\[\Delta \nu_n = \theta w'(\nu_n) + O(\theta^2) \]
uniformly over \(x_\theta \) and \(n \). This expression and (1.1) imply that
\begin{equation}
E(\Delta Z_n \mid Z_n) = \theta^{-1}(E(\Delta X_n \mid X_n) - \Delta \nu_n) \\
= \theta^{-1}(w(X_n) - w(\nu_n)) + O(\theta^2).
\end{equation}
Since \(w' \) is Lipschitz, this yields
\[E(\Delta Z_n \mid Z_n) = \theta w'(\nu_n)Z_n + \theta^3 O(|Z_n|^3) + O(\theta^4), \]
which, in view of Lemma 1, is of the form (2.3).

Turning to the proof of (2.4), we begin by writing
\begin{equation}
E((\Delta Z_n)^2 \mid Z_n) = \theta^{-1} \text{Var}(\Delta X_n \mid X_n) + E(\Delta Z_n \mid Z_n)^2.
\end{equation}
As a consequence of (2.6),
\begin{equation}
E(\Delta Z_n \mid Z_n) = \theta O(|Z_n|) + O(\theta^3),
\end{equation}
so that
\[E(\Delta Z_n \mid Z_n)^2 \leq K(\theta^3|Z_n|^3 + \theta^3) \]
and
\begin{equation}
E(\Delta Z_n \mid Z_n)^2 = o(\theta)
\end{equation}
by Lemma 1. Next, (1.2) yields
\[\theta^{-1} \text{Var}(\Delta X_n \mid X_n) = \theta s(X_n) + o(\theta) \]
\begin{equation}
= \theta s(\nu_n) + \theta^3 O(|Z_n|) + o(\theta) \\
= \theta s(\nu_n) + o(\theta)
\end{equation}
by Lemma 1. Substituting (2.9) and (2.10) into (2.7), we obtain (2.4).
Finally,
\[E(|\Delta Z_n| \mid Z_n) \leq 4n^{-1}(E(|\Delta X_n| \mid X_n) + |\nu_n|^3) \]
\[\leq K\theta^3 \]
as a consequence of (1.3) and the boundedness of \(w \). This implies (2.5).

3. A general central limit theorem. In view of (2.1), (2.2), Lemma 1, and Lemma 2, Theorem 1 is a corollary of Theorem 2.

Theorem 2. Suppose that \(Z_n^\theta, n \geq 0, \theta \in J \), is a family of real-valued stochastic processes such that

\[
\begin{align*}
E(\Delta Z_n^\theta \mid Z_n^\theta) &= \theta a(n, \theta)Z_n^\theta + o(\theta) \\
E((\Delta Z_n^\theta)^2 \mid Z_n^\theta) &= \theta b(n, \theta) + o(\theta) \\
E(|\Delta Z_n^\theta|^3 \mid Z_n^\theta) &= o(\theta),
\end{align*}
\]

where
\[
\sup_{n \geq 0} E(|o(\theta)|)/\theta \to 0
\]
as \(\theta \to 0 \),

\[(3.4) \quad a(n, \theta) \to a \quad \text{and} \quad b(n, \theta) \to b\]
as \(\theta \to 0 \) and \(n\theta \to \infty \), and \(a < 0 \). Suppose also that

\[(3.5) \quad \sup_{n \geq 0, \theta \in J} E((Z_n^\theta)^2) < \infty .
\]

Then \(\mathcal{L}(Z_n^\theta) \to \mathcal{N}(0, \sigma^2) \) as \(\theta \to 0 \) and \(n\theta \to \infty \), where \(\sigma^2 = b/2|a| \).

Proof. Let
\[
h_n(\gamma) = h_n^\theta(\gamma) = E(\exp(i\gamma Z_n)).
\]

Then
\[(3.6) \quad h_{n+1}(\gamma) = E(\exp(i\gamma Z_n))E(\exp(i\gamma \Delta Z_n \mid Z_n)).
\]

Expanding \(E(\exp(i\gamma \Delta Z_n)) \) up to terms of third order in \(\gamma \) and using (3.1)—(3.3) we obtain

\[
\Delta h_n(\gamma) = \theta \gamma a(n, \theta) h_n(\gamma) - \theta 2^{-1} \gamma^2 b(n, \theta) h_n(\gamma) + d_n(\gamma),
\]

where
\[
|d_n(\gamma)| \leq \theta \varepsilon |\gamma|
\]
and \(\varepsilon \) is our generic notation for a quantity that depends only on \(\theta \) and approaches 0 as \(\theta \) approaches 0. This estimate is valid for all \(n \geq 0 \) as long as \(\gamma \) is bounded, \(|\gamma| \leq \Gamma \). From (3.7) it follows that

\[
\Delta h_n(\gamma) = \theta \gamma a h_n(\gamma) - \theta 2^{-1} \gamma^2 b h_n(\gamma) + d_n(\gamma) + e_n(\gamma),
\]

where, in view of (3.4) and (3.5),

\[
|e_n(\gamma)| \leq \theta c(n, \theta)|\gamma|,
\]
and \(c(n, \theta) \) is a quantity that approaches 0 as \(\theta \to 0 \) and \(n\theta \to \infty \). The inequality (3.10) presupposes \(|\gamma| \leq \Gamma \).
Let

\[v(\gamma) = \exp(2^{-1}a^2), \]
\[H_n(\gamma) = v(\gamma)h_n(\gamma), \]
\[D_n(\gamma) = v(\gamma)d_n(\gamma), \]
\[E_n(\gamma) = v(\gamma)e_n(\gamma), \]

and note that

\[v(\gamma)h_n'(\gamma) = H_n'(\gamma) - \sigma^2 H_n(\gamma). \]

Thus multiplication of (3.9) by \(v(\gamma) \) yields

\[\Delta H_n(\gamma) = \theta a H_n'(\gamma) + D_n(\gamma) + E_n(\gamma). \]

As a consequence of (3.8) and (3.10),

\[|D_n(\gamma)| \leq \theta \varepsilon_0|\gamma| \]

and

\[|E_n(\gamma)| \leq \theta c(n, \theta)|\gamma| \]

for \(|\gamma| \leq \Gamma \).

Let

\[\gamma_j = (1 + \theta a)^j \xi, \]

where \(\xi \) is fixed for the remainder of the proof. Assuming \(\theta \leq 1/|a| \),

\[|\gamma_j| \leq e^{\theta j}|\xi|. \]

In particular, \(\gamma_j \) is bounded by \(|\xi| = \Gamma \) for all \(j \) and \(\theta \).

For any \(0 \leq m \leq M \), define \(\mathcal{H}_m = \mathcal{H}_m(M, \theta) \) by

\[\mathcal{H}_m = H_m(\gamma_{M-m}). \]

Then \(\mathcal{H}_M = H_m(\xi) \). Suppose that \(\mathcal{H}_M - \mathcal{H}_k \to 0 \) as \(\theta \to 0 \) and \(k \theta \to \infty \), while \(\mathcal{H}_k \to 1 \) as \(\theta(M - k) \to \infty \). Then choosing \(k = [M/2] \) we see that \(H_m(\xi) \to 1 \),

\[h_m(\xi) \to \exp(-2^{-1}a^2), \]

and \(L(Z_m) \to \mathcal{N}(0, a^2) \) as \(\theta \to 0 \) and \(M \theta \to \infty \), as the theorem asserts. Thus it remains only to show that \(\mathcal{H}_M - \mathcal{H}_k \to 0 \) and \(\mathcal{H}_k \to 1 \).

It may assist the reader in understanding the proof that \(\mathcal{H}_M - \mathcal{H}_k \to 0 \) to regard (3.11) as an approximation to the partial differential equation

\[\frac{\partial H(t, \gamma)}{\partial t} = \gamma a \frac{\partial H(t, \gamma)}{\partial \gamma}. \]

For any constant \(\gamma \), \((t, ge^{-at}) \) is a characteristic base curve of this equation ([1] page 63), so

\[\frac{d}{dt} H(t, ge^{-at}) = 0. \]

Since \(\gamma_{M-m} \) approximates \(\gamma_M e^{-aM\theta} \), we expect \(\mathcal{H}_m = H_m(\gamma_{M-m}) \) to approximate \(H(M\theta, \gamma_M e^{-aM\theta}) \). Thus \(\mathcal{H}_m \) should vary little with \(m \).
Clearly
\[\Delta \mathcal{X}_{m-1} = A_m - B_m \]
for \(m \geq 1 \), where
\[A_m = H_m(\tau_{M-m}) - H_{m-1}(\tau_{M-m}) \]
and
\[B_m = H_{m-1}(\tau_{M+1-m}) - H_{m-1}(\tau_{M-m}) \).

Thus
(3.15)
\[|\mathcal{X}_M - \mathcal{X}_k| \leq \sum_{n=k+1}^M |A_m - B_m| . \]

Now
(3.16)
\[B_m = \Delta \gamma_{M-m} H'_{m-1}(\gamma_{M-m}) + F_{m-1} \]
\[= \theta a_{M-m} H'_{m-1}(\gamma_{M-m}) + F_{m-1} , \]
where
(3.17)
\[|F_{m-1}| \leq 2^{-1} |\Delta \gamma_{M-m}|^3 \max_{|\gamma| \leq |\gamma|} |H''_{m-1}(\gamma)| \]
\[\leq K \theta^2 e^{2\theta(M-m)} \]

by virtue of (3.14) and (3.5). When the expression (3.16) for \(B_m \) is subtracted from (3.11) for \(A_m \), the leading terms cancel, so that
\[A_m - B_m = D_{m-1}(\gamma_{M-m}) + E_{m-1}(\gamma_{M-m}) - F_{m-1} . \]

Applying the estimates (3.12), (3.13), (3.14), and (3.17) to (3.15), we obtain
\[|\mathcal{X}_M - \mathcal{X}_k| \leq (\varepsilon_{\theta} + \sup_{|n| \leq k} c(n, \theta)) \theta \sum_{n=k+1}^M e^{\theta(M-m)} \]
\[\leq (\varepsilon_{\theta} + \sup_{|n| \leq k} c(n, \theta)) \theta/(1 - e^{\theta}) . \]

Since \(\varepsilon_{\theta} \to 0 \) as \(\theta \to 0 \), and \(c(n, \theta) \to 0 \) as \(\theta \to 0 \) and \(n \theta \to \infty \), it follows that \(\mathcal{X}_M - \mathcal{X}_k \to 0 \) as \(\theta \to 0 \) and \(k \theta \to \infty \).

Note, finally, that
\[|h_k(\gamma_{M-k}) - 1| \leq |\gamma_{M-k}| E(|Z_k|) \]
\[\leq K |\gamma_{M-k}| \]
by (3.5). Since \(\gamma_{M-k} \to 0 \) as \(\theta(M-k) \to \infty \), we have \(h_k(\gamma_{M-k}) \to 1 \) and thus
\[\mathcal{X}_k = h_k(\gamma_{M-k}) \phi(\gamma_{M-k}) \to 1 \]
as \(\theta(M-k) \to \infty \). This completes the proof.

4. The Wright–Fisher model. Suppose that there are two alleles, \(A_1 \) and \(A_2 \), at a certain chromosomal locus in a diploid population of \(N \) individuals. Let \(i \) be the number and \(x = i/2N \) the proportion of \(A_1 \) genes in the population at any time. According to the model (see [2] Section 4.8), values \(X_n \) of \(x \) in successive generations form a finite Markov chain with transition probabilities
\[p_{ij} = \binom{N}{j} \pi_i^j (1 - \pi_i)^{2N-j} , \]
where
\[\pi_i = (1 - u) \pi_i^* + \nu(1 - \pi_i^*) \]
and
\[\pi_i^* = \frac{(1 + s_1)x^2 + (1 + s_2)x(1 - x)}{(1 + s_1)x^2 + 2(1 + s_2)x(1 - x) + (1 - x)^2} , \]
The constants \(s_1, s_2, u, \) and \(v \) control selection pressure and mutation rate. The fitnesses of the genotypes \(A_i A_i \) and \(A_i A_s \), relative to that of \(A_s A_s \), are \(1 + s_i \) and \(1 + s_s \), respectively. The probability that an \(A_i \) gene mutates to \(A_s \) is \(u \), while the probability that \(A_s \) mutates to \(A_i \) is \(v \).

To apply Theorem 1 to this model, we assume that these parameters are proportional to \(\theta = (2N)^{-1} \): \(s_i = \bar{s_i} \theta, u = \bar{u} \theta, \) and \(v = \bar{v} \theta \), where \(\bar{u}, \bar{v} \geq 0 \). The routine verification of the assumptions in the second paragraph of Section 1 is given in ([6] Section 18.1), where it is also shown that \(s(x) = x(1 - x) \) and

\[
(4.1) \quad w(x) = \bar{\theta} - (\bar{u} + \bar{v})x + x(1 - x)(\bar{s}_i + (\bar{s}_i - 2\bar{s}_s)x)
\]
on \(I = [0, 1] \). Thus Theorem 1 applies whenever \(w \) has a unique root \(\lambda \) and \(w'(\lambda) < 0 \) (i.e., \(\lambda \) is stable).

The following conditions are sufficient but by no means necessary for this: \(\bar{u} > 0, \bar{v} > 0, \) and \(\bar{s}_i \leq 2\bar{s}_s \). (Proof. Since \(w(0) = \bar{\theta} > 0 \) and \(w(1) = -\bar{u} < 0 \), \(w \) has at least one zero in \((0, 1)\). If \(\bar{s}_i = 2\bar{s}_s \), \(w \) is quadratic or linear, and uniqueness and stability certainly obtain. If \(\bar{s}_i < 2\bar{s}_s \), the coefficient of \(x^i \) is positive, so \(w \) has a root above 1 and a root below 0. Thus \(w \) has only one root \(\lambda \) in \((0, 1) \) and it must satisfy \(w'(\lambda) < 0 \).) The inequality \(\bar{s}_i \leq 2\bar{s}_s \) admits a number of genetically significant special cases:

(i) no dominance, \(\bar{s}_i = 2\bar{s}_s \);
(ii) favored gene completely dominant, \(\bar{s}_i = \bar{s} > 0 \) or \(\bar{s}_i < \bar{s}_s = 0 \); and
(iii) heterozygote advantage, \(\bar{s}_i < \bar{s}_s > 0 \).

Writing \(X_s^N \) and \(x^N \) for \(X_s^\theta \) and \(x_\theta \), the conclusion of Theorem 1 can be expressed as follows:

\[
(2N)^i[X_s^N - f(n/(2N)^i, x^N)] \sim \mathcal{N}(0, g(\infty))
\]
as \(N \to \infty \) and \(n/N^i \to \infty \). The occurrence of the fourth root on the left is noteworthy. (We observe that the related results in lines 13 and 22 on page 259 of [6] should have fourth roots instead of square roots.)

To see the relation of Theorem 1 to other diffusion approximations of the Wright–Fisher model, suppose that the mutation and selection parameters are proportional to a parameter \(\varepsilon > 0 \), i.e., \(s_i = s_i \varepsilon, u = u\varepsilon, \) and \(v = v\varepsilon \). Theorem 1 pertains directly to \(\varepsilon = (2N)^{-1} \), but it turns out that this result is typical of those obtained when \(\varepsilon \to 0 \) sufficiently slowly that \(N\varepsilon \to \infty \). If the function \(w \) given in (4.1) satisfies the hypotheses of Theorem 1, then \((\varepsilon N)^iX_s \), suitably centered, is asymptotically normally distributed as \(\varepsilon \to 0, N\varepsilon \to \infty, \) and \(n\varepsilon \to \infty \). This generalization of Theorem 1 will be proved in a subsequent paper. For a clear heuristic analysis of the asymptotic behavior of \(X_s \) when \(\varepsilon \to 0 \) and \(N\varepsilon \to \infty \), see Section 9 of [3].

Suppose now that \(\varepsilon = (2N)^{-1} \). In this case, \(\mathcal{L}(X_s^N) \to \mathcal{P}(t, x) \) as \(x^N \to x, N \to \infty, \) and \(n\varepsilon \to t < \infty \), where \(\mathcal{P}(t, x) \) is a nondegenerate distribution associated with a diffusion on \(I ([6] \text{ page 260}) \). The standard diffusion approximations of population genetics are of this type ([2] Section 5.1). This result, like the
analogous result (1.5), is valid whether or not the function w in (4.1) satisfies
the hypotheses of Theorem 1. One would like to know what auxiliary conditions,
if any, must be imposed to insure that $\mathcal{L}(X^{n})$ converges to $\lim_{t \to \infty} \mathcal{P}(t, x)$ as
$x^{n} \to x$, $N \to \infty$, and $n \to \infty$.

5. Multidimensional case. Suppose that the assumptions of the first two
paragraphs of Section 1 are in force, except that X_{n}^{θ} is k dimensional, and the
conditional variance in (1.2) is replaced by the conditional covariance matrix.
Then (1.5) is valid, where the asymptotic covariance matrix $g(t) = g(t, x)$ satisfies

$$g'(t) = w'(f(t))g(t) + g(t)w'(f(t))^* + s(f(t)),$$

and * indicates transposition ([6] Theorem 8.1.1). Theorem 3 is the multi-
dimensional analog of Theorem 1.

Theorem 3. Suppose that the following additional conditions obtain: I is bounded,
there is a point λ such that $w(\lambda) = 0$, and there is an inner product $[x, y]$ on R^{k} such
that

$$[x - \lambda, w(x)] < 0$$

for all $x \in I$, $x \neq \lambda$, and

$$[z, w'(\lambda)z] < 0$$

for all $z \in R^{k}$, $z \neq 0$. Then

$$\mathcal{L}(Z_{n}^{\theta}) \to \mathcal{N}(0, g(\infty))$$

as $\theta \to 0$ and $n\theta \to \infty$, where $g(\infty)$ is the unique solution of the system

$$w'(\lambda)g(\infty) + g(\infty)w'(\lambda)^* + s(\lambda) = 0$$

of linear equations.

Obviously (5.1) implies that λ is the only zero of w. The most general inner
product on R^{k} is $[x, y] = (x, Py)$, where (x, y) is the Euclidean inner product
and P is a positive definite matrix.

Theorem 3 can be established by a straightforward generalization of the proof
of Theorem 1. This involves establishing the multidimensional generalizations
of Lemmas 1 and 2 and Theorem 2. We omit details.

Theorem 3 is applicable to the Zeaman–House–Lovejoy learning model [7],
which describes how a human or lower animal might learn to attend to a certain
"relevant" dimension of a multidimensional stimulus. In this rather complex
model, X_{n} is two dimensional and I is the closed unit square. There are six
learning rate parameters, φ_{1}, φ_{2}, φ_{3}, θ_{1}, θ_{2}, and two payoff probability
parameters, π_{n} and π_{w}. To apply Theorem 3, we assume that the learning rate
parameters are all proportional to a single parameter θ, i.e., $\varphi_{i} = \theta \bar{\varphi}_{i}$ and $\theta_{j} = \theta \bar{\theta}_{j}$, where $\bar{\varphi}_{i}$ and $\bar{\theta}_{j}$ are positive constants. It can be shown that the hypotheses
of Theorem 3 are satisfied if and only if one of the following conditions holds:
(i) $\pi_{n} < 1$ and $\pi_{w} < 1$, or (ii) $\max(\pi_{n}, \pi_{w}) = 1$, $\min(\pi_{n}, \pi_{w}) < 1$, and
\(\varphi_1 > \varphi_2 (\pi_B + \pi_W)/2. \) In either case we can take \([x, x'] = x_1 x'_1 + c x_2 x'_2 \) for \(c \) sufficiently large. Under condition (i), \(\lambda \) is in the interior of \(I \), while under condition (ii), it is one of the corners.

REFERENCES

Department of Psychology
University of Pennsylvania
3815 Walnut Street
Philadelphia, Pa. 19174