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The Zeaman-House-Lovejoy (ZHL) model for discrimination learning involves 
interacting perceptual and response learning processes, with rate parameters v and 0, 
respectively. This paper describes a number of predictions of the ZHL model for the 
optional shift paradigm. Kendler and Kendler showed that the proportion of subjects 
who learn an optional shift as a reversal increases with subject’s age, and Campione 
and others have argued that this trend may reflect developmental variation in para- 
meters Ilike q~ and 0. Our main result is a formula specifying the dependence of reversal 
probability on pl and 0 for the ZHL model. 

I. INTRODUCTION 

The most influential attentional model for discrimination learning is the one 

formulated by Zeaman and House (1963). A similar scheme was proposed by Lovejoy 
(1966). A previous paper (Norman, 1974) surveyed the predictions of the Zeaman- 
House-Lovejoy (or ZHL) model for a variety of experimental paradigms. The present 
paper continues this survey. The topics to be covered are optional shift and learning 
with redundant relevant dimensions. The notation, style, and viewpoint of the present 
and previous papers are similar, and together they treat a substantial proportion 
of the standard discrimination learning paradigms. 

TABLE 1 

An Optional Shift Experiment’ 

Initial phase Shift phase Test phase 

(Gcf, Rt-) (Gc-, Rt+) (Gt+, Rc+)” 

(Gt-, Rc+) 

o G = green, R = red, t = triangle, c = circle, + = rewarded, - = nonrewarded. 
B Choice of Gt is indicative of reversal shift. 
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An optional shift experiment has three phases, illustrated in Table 1. Stimuli 
vary along two dimensions, form, and color. Each dimension is represented by two 
values: circle and triangle, and green and red, respectively. On any trial, the subject 
(a young child, perhaps) must choose between a green circle and a red triangle [such 
a trial is symbolized (Gc, Rt)] or between a green triangle and a red circle [(Gt, Rc)]. 
The spatial position of the two stimuli within each pair is randomized over trials. 
Rewarded and nonrewarded choices are indicated by I‘+” and I‘-” superscripts. 

In the Initial Phase, both types of stimulus presentations occur equally often, 
and choices of circular stimuli are rewarded. We say that form is relevant, color is 
irrebvant, and circle is correct. After a criterion is met in the Initial Phase, the subject 
enters the Shift Phase. Here only one of the stimulus pairs, (Gc-, Rt+), is presented, 
and choice of the red triangle is rewarded. We say that color and form are redundant 
relevant dimensions. The subject can solve the problem by learning to choose “red” 
or “triangle” (or “red triangle”). In the first case, the solution in the Shift Phase 
is based on the dimension which was irrelevant in the Initial Phase, so the subject 
has performed an extradimensional shift. In the second case, the solution is based 
on the initially relevant dimension, but the subject has had to learn a new correct 
response. This is reversal shift. 

The Test Phase permits us to diagnose the basis of solution of the shift problem. 
When confronted with (Gt, Rc), a subject who performed a reversal and learned 
to choose triangle in the Shift Phase will presumably choose Gt consistently. On 
the other hand, consistent choice of Rc indicates that the subject performed an extra- 
dimensional shift and learned to choose red in the Shift Phase. Subjects who choose 
neither stimulus consistently in the test phase are termed nonselectors. Both stimuli 
of the test pair, (Gt, Rc), are rewarded in the Test Phase. Interspersed with presenta- 
tions of the test pair are presentations of the relearning pair, (Gc-, Rt+), which 
occurred in the Shift Phase. 

Kendler and Kendler (1962) have been interested for many years in developmental 
changes in discrimination learning performance. Recently (Kendler & Kendler, 1970) 
they performed a large scale optional shift experiment on children (grades K, 2, 
and 6) and college students that provides very clear documentation for such changes. 
Their main finding is this: With increasing age, the proportion of reversal shifters 
increases, while the proportions of extradimensional shifters and nonselectors decrease. 
In the Kendlers’ view, this developmental trend is indicative of the appearance of 
verbal mediation, or some other form of mediadon that facilitates reversal shift, 
in larger proportions of subjects in older subject groups. In accordance with this 
outlook, they propose that qualitatively different models be applied to children 
before and after they attain the crucial mediational capacities. This program seems 
quite reasonable, intuitively. 

It has, however, been recently noted that the developmental trend reported by 
the Kendlers is susceptible to another interpretation. According to this view, all 
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subjects undergo perceptual and response learning in accordance with some two- 
process attentional scheme, but the relative rates of perceptual and response learning 
change with age (Campione, 1970; Dickerson, Novik, & Gould, 1972; Zeaman & 
House, 1974). The verbal demonstration (see Campione, 1970, p. 300) that learning 
rate parameters control reversal probability in attentional theories seems perfectly 
sound, but it gives no indication of the magnitude of behavioral change that will 
result from a given degree of parametric variation. Alternatively, the verbal argument 
provides no basis for estimating the parametric variation corresponding to the 
observed developmental trend. We shall fill this gap, at least for the ZHL model, 
by deriving a formula relating the probability of optional reversal shift to the 
perceptual learning rate parameter, v, and the response learning rate parameter, 6. 
This formula is Eq. (1) of the next section. 

2. THE ZHL MODEL 

The following description of the ZHL model applies to all three phases of the 
experiment. There is a perceptual learning process, indexed by the probability, o, 
that the subject attends to form on a particular trial. If he does not attend to form, 
he attends to color; this has probability V’ = 1 - ZI. There are two response learning 
processes, one for each dimension. If the subject attends to form on a trial, he chooses 
circle with probability y, and triangle with probability y’. If he attends to color, 
he chooses green with probability a and red with probability z’. In summary, 

P(form) = 0, 
P(color) = D’ = 1 - v, 

P(circle j form) = y, 

P(green j color) = z. 

The three variables, a, y, and z, or, alternatively, the vector x = (v, y, z), determine 
the subject’s state of learning at the beginning of any trial. 

The values of v, y, and x change from trial to trial as a function of the perceptual 
response (form or color), the overt response, and the consequent reward or non- 
reward. The probability, U, of attending to form increases if the subject attends 
to form and is rewarded, or attend4 to color and is not rewarded. Otherwise v decreases. 
The conditional probability, y, of choosing circle, given attention to form, changes 
only on trials on which the subject attends to form. If he attends to form, chooses 
circle, and is rewarded, y increases. The probability y also increases when the subject 
attends to form, chooses triangle, and is not rewarded. On other trials on which the 
subject attends to form, y decreases. Changes in z are analogous to the changes 
in y just described. 
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All of these changes are effected by linear operators. Let V, , Y,, , and 2, be the 
values of w, y, and z on trial n of some phase of the experiment, n = 0, 1,2,..., and 
let A V, = V,, - I’,, . Then increases and decreases in V, are described by equations 
of the form 

AVn = cpv,’ and AV,, = -yv,, , 

where 0 < 9 < 1. Similarly, the possible changes in Y, and 2, are 

AY,, = fly,, and AY,, = -OY,, , 

AZ, = OZ,’ and AZ, = -f?Z,, , 

where 0 < 0 < 1. Thus ‘p is the perceptual learning rate parameter, while 0 is the 
response learning rate parameter. We shall see that the ratio, F/O, of the two learning 
rates is a crucial determinant of performance in optional shift experiments. 

The Initial Phase of the experiment is the basic discrimination learning paradigm, 
and was considered in detail in Norman (1974). For our present purposes, we need 
only note that, according to the model, each subject learns to attend to the relevant, 
form, dimension (hence V, -+ 1 as 71 --f co, almost surely [a.s.]) and the correct, 
circle, response on this dimension is completely learned (Y, + 1 as n -+ a, a.s.). 
Thus, if the criterion in the Initial Phase is sufficiently strict, we may take ~1 = 1 
and y = 1 to be the initial values of u and y in the Shift Phase for all subjects. Since 
reward is random with respect to color in the Initial Phase, the natural choice for the 
initial value of z in the Shift Phase is z = 4 . However, this choice is only an approxi- 
mation to the appropriate value, which may vary from subject to subject, depending 
on initial color preferences and the particular sequence of responses and rewards 
on trials on which the subject attends to the irrelevant color dimension. 

We now turn our attention to the Shift Phase, which will be the focus of our sub- 
sequent work. Table 2 describes the trial-to-trial changes in v, y, and z that can 

TABLE 2 

The ZHL Model for Experiments with Redundant Relevant Dimensions” 

Event 

form, 1+ 

form, c- 

color, R+ 

color, G- 

AY 

-0Y 

-eY 

0 

0 

AZ 

0 

0 

-9.Z 

-tJZ 

Probability 

VY’ 

VY 

0'2' 

0'2 

at = triangle, c = circle, R = Red, G = Green, + = rewarded, - = nonrewarded. 
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occur in this phase, and gives their probabilities. This description does not depend 
on the initial values of ZI, y, and z, so Table 2 applies to any experiment with two 
redundant relevant dimensions, not just to the Shift Phase of an optional shift 
experiment. As an illustration of the content of the table, consider the first row, 
which corresponds to trials on which the subject attends to form and chooses triangle. 
According to the table, this event has probability V,Y,‘, and produces changes 

AV, = Tvn’, AY, = -eu,, AZ, = o, 

in o, y, and z on trial n of the Shift Phase. 
We pause here to give an overview of our main results for this model. 

THEOREM 1. V, converges, as n ---f co, to a limit, V, , and V, E (0, l} a.s. Subjects 
who learn to attend to form (V, = 1) also learn to choose triangle (Y- -+ 0); similarly, 
V, = 0 implies 2, --f 0 a.s. 

This theorem holds for arbitrary values of V,, , Y, , and 2, , though the probability, 
P( V,,, = l), that a subject learns to attend to form is influenced by the initial condi- 
tions, as well as the learning rates y and 0. For the particular initial conditions V, = 1, 
Y,, = 1, 2, = 4, P( V, = 1) = P(reversal shift) is the probability that a subject 
learns an optional shift as a reversal. We shall derive the formula 

P(reversa1 shift) G 1 - 2-$~/8 if q/,ie < 2, 
(1) -L - 0 if q/e > 2. 

The symbol “t” denotes approximate equality. The approximation should be 
good when p and 19 are small, since it becomes exact in the limit as q and 0 -+ 0. 
Even when v and 0 are not small, (1) may b e a useful rough guide to the relation 
between P(reversa1 shift) and y/8. 

According to (l), P(reversa1 shift) can take on any value between 0 and 1. It is 
less than 4 if q/e > 1, and greater than 8 if (p/0 < 1. Moreover P(reversal shift) 
would increase with age, as observed by Kendler and Kendler (1970), if #3 decreased 
with age. Independent evidence of such a change in the ratio of perceptual and response 
learning rates has been provided by Dickerson et al. (1972) and Medin (1973, p. 333). 
[See Zeaman and House (1974) for a thorough assessment of the current status of 
theories bearing on developmental trends in discrimination learning.] 

The fact that the ZHL model is compatible with any observed value of P(reversa1 
shift) raises the specter of a model that is consistent with any data, hence correct 
but useless. [For a criticism of this sort in a closely related context, see T. Kendler 
(1971, last paragraph on p. 770 and first paragraph on p. 771).] Let us immediately 
put this apparition to rest. The fact that V, E (0, 1) a.s. means that, according 
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to the model, each subject will be classified as either a reversal shifter or an extra- 
dimensional shifter in the Test Phase; i.e., there will be no nonselectors, provided 
that the criterion in the Shift Phase is sufficiently strict to permit the learning process 
in this Phase to approach asymptote. This prediction is clearly at odds with Kendler 
and Kendler’s (1970) data, so the ZHL model cannot be considered a complete 
account of learning in their experiment. Readers are invited to devise modifications 
of the model or of the experiment that will bring the two into closer agreement. 

3. CONVERGENCE OF V, 

The purpose of this section is to prove Theorem 1 and Theorem 2 below. These 
theorems pertain to experiments with redundant relevant dimensions, hence to the 
Shift Phase of the optional shift experiment. 

For n = 0, 1, 2 ,..., let 

w n = E(V?J, Yn = WTA z, = E(Z,). 

In applications to the Shift Phase, 11 = 0 corresponds to the initial trial of that phase. 
Let T be the total number of errors (choices of GE-) in the experiment or phase 
under consideration. 

THEOREM 2. 

P(V, = 1) = V, = 00 + wwo - ?o> - (Yo - Yrn)lI (2) 

E(T) = ~-WY, - rao) + (~0 - GJI. (3) 

In applications to the Shift Phase, we set u. = 1, y. = 1, and z. = 4 . However, 
ya, and a, are unknown, so Theorem 2 does not, in itself, show how P(Voo = 1) 
and E(T) depend on v and 0. Approximations to yco , Z, , P( I’, = l), and E(T), 
valid when 9 and 0 are small, are developed in the next section. 

Referring back to Table 2, we note the strong and psychologically unwarranted 
assumption that there is only a single “v” parameter, instead of four, and a single 0 
parameter, instead of four. Theorem 1 remains true if this assumption is dropped, 
though the proof of the more general theorem is more difficult than that given below. 
Theorem 2 and the theorems presented in the next section are easily generalized 
to the case where there are two 0’s, one for y and one for Z, but only one y. 

The following simple lemma is the basis for all our subsequent work. Let x = 
(w,Y, 4 and -G = (v,, Y, , -%A 
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LEMMA 1. 

&?qA v, / x, = x) = -wy + w’z, (4) 

e-cE(AY, 1 x, = x) = -WY, (5) 

&‘E(AZ, 1 x, = x) = -4%. (6) 

PYOO~. From Table 2 we obtain 

qAqA v, 1 xn = x) = w’wy’ - w2y - ww’x’ + (w’)%. 

Equation (4) is obtained by rewriting w”y as my - vv’y and (zJ’)~x as D’Z - W’Z, 
and noting that the four terms with ZW’ as a factor sum to zero. The derivations 
of (5) and (6) are even more straightforward. Q.E.D. 

Proofs of Theorems 1 and 2. Let 

w, = v-lvn - 9-1~~ + e-12, . (7) 

It follows from (4), (5), and (6) that 

E(A w, ] X,) = 0. (8) 

Hence {W, , n > 0) is a martingale. Since it is bounded (1 W,, 1 < v-l + 0-l), 
W, = lim,,, W, exists a.s. (Chung, 1974, Theorem 9.4.4). But Y,+r < Y,, and 
Z n+l < Z, so Y, = lim,,, Y, and Z, = Ii%,, Z, exist. Convergence of W, , 
Y, , and Z, implies convergence of V, , i.e., V, = lim,,, V, exists. 

According to Table 2, d V, = p)Vm’ or d V, = -qoVn . In the first case, 

In the second case 

Hence, in either case, j d V, j > ~JV%V~‘. Letting n ---f co in this inequality, and 
noting that AV, -+ V, - V, = 0, we obtain V,(l - Vm) = 0. Hence V, E (0, I} 
a.s. 

BY (5), 
FE(A Y,) = FE(E(A Y, / X,)) 

= -a( V,Y,). 

Adding over n = 0, I,..., m - 1, we obtain 

m-1 

(9) 

wy, -Y,,) = c w,w. 
9Z=O 
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VYO -Ym) = f -v?x,), 
TWO 

137 

(10) 

on letting m + co. In particular, 

SO ~~=‘=, V,Y, < co and V,Y, = 0 as. Now 

VW = 11 - [Y, = O] c [V,Y, > 01, 

so the event on the left has probability 0. If P(A - B) = 0, we say that A implies B 
a.s. Hence V, = 1 implies Y, = 0 as. Similarly, V, = 0 implies 2, = 0 a.s. 
This completes the proof of Theorem 1. 

Since V, E (0, l} as., it follows that co, = E( Vm) = P(V, = l), as asserted 
in (2). To derive the second part of (2), take expectations on both sides of (8) to 
obtain E(d IV,) = 0, hence dE( IV,) = 0. It follows that E(?V=) = E(Wo), which, 
in conjunction with the definition, (7), of W, yields (2). 

Adding (10) to the analogous equation, 

e-l(zo - z,) = f E(Vn’Z,), 
9%=0 

for 2, , we obtain 

e-qy, -yc9) + (zo - z,)] = f E(V,Y, + V,lZ,). (11) 
n=o 

But V,,Y, + V,‘Z, is the conditional probability of an error on trial 71, given X, , 
so its expectation is the unconditional probability of an error on trial n. It follows 
that the sum on the right in (11) is E(T), and (3) is proved. Q.E.D. 

4. SLOW LEARNING 

In this section we consider the model of Table 2 with initial values V, , Y. , and 
2, subject only to the condition that their variances are zero. Thus there are constants 
o. , y. , and z, such that 

vo = 00, u, = Yo > ZJ = f&J, (12) 
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a.s. We shall develop approximations to zj, , ya , x, , and E(T) that become exact 
in the limit as 9 and % approach zero. The initial values v,, , y,, , and a0 are held fixed 
as g, and % vary. For example, the natural initial values for the Shift Phase, iua = 1, 
y,, = 1, and za = $ , do not depend on p and %. 

To derive the desired approximations, we begin by taking expectations over Xn = x 
on both sides of (5) to obtain 

e-ldE( Y,) = --E( V,Y,). 

If we replace E( V,Y,) by the approximation E( V,) E( Y,) = cu,y, , we obtain 

e-uy, e= -v”,y, . (13) 

If the approximate equality sign is changed to exact equality, the resulting equation, 
together with similar equations obtained from (4) and (6), defines the expected operator 
approximation to v,, , yn , and .z, . We shall go a step further, and replace the dif- 
ference equation, (13), by a differential equation. Let v(t), y(t), and z(t) be functions 
of a continuous variable, t, whose values, v(n%), y(n%), and z(n%), at time n% approximate 
v, , yn , and z, . Then (13) implies that 

%-Yy(t + 4 - r(t)) + -v(t) y(t), 

where t = n%. The left-hand side is approximately (dy/dt)(t). This suggests that 
we define y(t) to be the solution of the differential equation 

dy/dt = -v(t) y(t). (14) 

To be more precise, we must first write the analogous equations for dvldt and dzjdt 
derived from (4) and (6): 

dvldt = (p/%X-v(t>y(t> + v(t)’ WI, (15) 

dz/dt = -v(t)‘z(t), (16) 

where v(t)’ = 1 - v(t). The functions v(t), y(t), and z(t) are then defined to be 
the solutions of the system (14)-(16) of differential equations satisfying the initial 
conditions 

analogous to (12). Note that q and % do not appear in (14) or (16), and only their 
ratio appears in (15). This implies that v(t), y(t), and z(t) depend on v and % only 
through their ratio v/e. 
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A very general theorem (Norman, 1972, Theorem 8.1.1.B) implies that v(t), y(t), 
and z(t) are uniquely defined by (14)-(17), and that 

as n + CD, v -+ 0, and 8 ---f 0, in such a way that n6 --f t < co and v/t? is constant. 
It is but a short step, conceptually, to Theorem 3, which is the result that we need 
for our present purposes. In (18), n --f co and 6’ -+ 0 simultaneously. In Theorem 3, 
B + 0 after n + co. 

THEOREM 3. Let er, = lim,,, v, , let v(co) = lim,,, v(t), and let ym , z, , 
y(m), and z(m) be dejined similarly. Then 

vcc - v(cjJ>, Ym -Y(a), zcc - z(a), 

as q~ -+ 0 and 0 + 0 in such a way that p/i9 remaim$xed. 

This result permits us to use v( co), y( co), and z( co) to approximate v, , ym , and 
z, when 93 and 0 are small. The utility of this approximation lies in the fact that 
v( co), y(a), and z(co), unlike v, , ym , and x, , are easy to calculate. It is, un- 
fortunately, necessary to distinguish between the cases y,, > z,, , y,, = z, and y,, < z,, . 

THEOREM 4. Suppose that y0 > z,, . (a) If v0 > (p/8)(y, - x,,), then z(m) = 0, 
y(a) = 0, and 

$00) = vo - bP>(Yo - x0) > 0. 

(b) If v,, < (#)(y, - zo), then z(m) = 0, v(m) = 0, and 

~(4 = (y. - zo) - wdvo. 

THEOREM 5. Suppose that y. = z. . Then v(m) = v. , y( CCI) = 0, and x(m) = 0. 

The case y. < x,, can be treated by applying Theorem 4 to r, = 1 - V, , 
Fn = -&I , and & = Y,, . 

The following corollary specializes Theorem 4 to the initial conditions of the 
Shift Phase. 

COROLLARY 1. Suppose that v, = 1, y. = 1, and z. = &. 

(a) If (p/e < 2, then z(m) = 0, y(m) = 0, and 

+0) = 1 - 2-iv/e. 
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(b) If v/e > 2, then x(c0) = 0, $00) = 0, and 

y(c0) = 2-l - (e/p). 

Combining Corollary 1 with Theorem 3, we obtain Rq. (1) of Section 2. The 
next result combines Corollary 1 and Theorem 2. Recall that T is the total number 
of errors. 

COROLLARY 2. Suppose v, = 1, y,, = 1, and z,, = 4 . Then 

E(T) N gl-1 if de G 2, 

N ig-1 + v-1 if ?;Ie 3 2, 
(19) 

as ‘p + 0, 0 ---f 0, and v/0 remains Jixed. 

Were one in possession of a set of optional shift data with a negligible proportion 
of nonselectors, one could use (1) and (19) to estimate both v and 8. 

Theorem 5 applies to an experiment with redundant relevant dimensions and 
equal initial response biases y0 and z,, (y,, = z, = 4 is the most intuitive special 
case). According to Theorem 5, y(co) = z(co) = 0; hence, by Theorem 3, y4, A 0 
and z, * 0 when p, and f3 are small. In other words, response learning goes almost 
to completion on both dimensions, not just the one on which the subject happens 
to be absorbed. The possibility of “multiple-cue learning” by the ZHL model was 
emphasized by Shepp, Kemler, and Anderson (1972). 

It remains only to prove Theorems 3-5. Theorems 4 and 5 must be proved before 
Theorem 3. 

Proof of Theorem 4. It follows from (18) that 0 < v(t), y(t), z(t) < 1. By (14), 
dy/dt < 0, so y(m) exists. Similarly, (16) implies that z( cc) exists. 

Comparing (15) with (14) and (16), we see that 

dv/dt = (p/e)[(dy/dt) - (dzldt)]. 

Integration yields 

44 - v. = of/~)nw - yo) - (4) - zo)i. 

Hence v(a) exists and 

$00) - vo = (9w(Y(~) - Yo) - Ma> - su (3-Y 

Letting t + co in (14), we see that 

;+z dy/dt = -v(m) y( CO). 
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The only value of this limit that is compatible with the boundedness of y  is 0, hence 

w(m) y(a) = 0. (21) 

Similarly, (16) yields 

w(a))’ x(c0) = 0. (22) 

Suppose now that y,, > z, . 

Case 1. Suppose that o(m) > 0. Then y(a) = 0, by (21), and (20) yields 

But u. < 1, so I < 1, and (22) yields x(co) = 0. Hence, by (20), 

a(m) = uo - WXYO - s> > 0, 

and o. > ((p/f?)(y, - zo). The latter inequality is the defining condition of Case (a) 
of Theorem 4. 

Case 2. Suppose a(a) = 0. By (22), z(m) = 0, so (20) yields 

--no = c?JP)KY(~) - Yo) + x01 
3 bP)(~o - Yoh 

or no G (dfwo - ~o>p as in Case (b) of Theorem 4. 
Consideration of both cases shows that V( oo) > 0 if and only if v. > (v/0)( y. - so). 

In other words, Cases (a) and (b) of Theorem 4 coincide, respectively, with Cases 1 
and 2 of the proof. Reviewing the proof with this in mind, we see that all assertions 
of the theorem have been established. Q.E.D. 

Proof of Theorem 5. Equations (21) and (22) are still valid when y. = x0, and 

(20) reduces to 

+a) - no = h-mY(~) - 4~0)). (23) 

We consider three cases. 

Case 1, Suppose that 0 < I < 1. Then y( co) = z( co) = 0 by (21) and (22), 
so w(m) = w, by (23). 

Case 2. Suppose that w(co) = 1. Then y(co) = 0 by (21), so (23) yields 

I - v. = -+/pie) ,++. 
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Since 1 - v,, > 0 and -(&‘)) ( ) z CO < 0, we must have n0 = 1 = z(ccj), and 
z( co) = 0. A similar argument shows that V( CO) = z+, and y( co) = “(co) = 0 if 
V( co) = 0 (Case 3). Thus these conclusions hold in any case. Q.E.D. 

Proof of Theorem 3. Suppose first that y0 3 .z, . By Theorems 4 and 5, z(c0) = 0, 
consequently z, > x(a). Similarly, yco 3 0 = y(c0) if y,, = z0 or if y0 > z0 and 
u,, > (#3)(yo - a,,). If y0 > za and v,, < (pl/e)(y, - so), consider (2) in the previous 
section. This equation implies that 

or 
0 G 00 + (P/W, - Yo’o) + Yml, 

Ym 3 (Yo - 20) - Wd~o 

= Y(W), 

by (b) of Theorem 4. Thus we have shown that yao 3 y(a) and z, 2 z( 00) whenever 
y. 3 zo. By symmetry, 

Ym >Y(W> 

for any values of y. and z, . 

and % 3 z(a), (24) 

Let t be any positive real number and let n = [t/O], the largest integer that does not 
exceed t/e. Then n --+ cc and nB + t as 6 --+ 0, so (18) is applicable. But yn (like Y,) 
is a nonincreasing sequence, so ym < yn , and (18) implies that lim s~p~-~y~ < y(t). 
Since this holds for all t > 0, we must have lim ~up~,~y~ < y(a). This result, 
in combination with (24), yields lim,,, ym = y( co). The proof that lim,,, z, = z( co) 
is similar. (We assume, as usual, that v/e is fixed as 0 and ‘p approach 0.) Letting B 
approach 0 in (2), we see that 

Q.E.D. 
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