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Slow Learning with Small Drift in Two-Absorbing-Barrier Models’ 

M. FRANK NORMAN 

University of Pennsylvania, Philadelphia, Pennsylvania 19104 

Certain two-choice learning models have the property that both the first and second 
moments of increments Ap, in A, response probability p, are of the order of magnitude 

of a parameter r. It is shown that the distribution of pn can be approximated by that of 
X,, , where Xt is a Markov process that is continuous in space and time. 

1. INTR~DIJCTI~N 

Let p, be a subject’s probability of response A, (rather than A,) on trial n > 0 in 
a two-choice learning experiment where reward follows Ai with probability rfTi . In 
the standard linear model for experiments where non-reward is assumed to have no 

effect, p, is a Markov process in the closed unit interval with transition probabilities 

I 
e 14n with prob. zlpll 

Ap, = -0,p, with prob. n2qTL 

1 0 with prob. 1 ~ rrrp, - r2q,I , 
(1.1) 

where qn = 1 - p, and 1 > Bi , nxi > 0. The first row applies to a rewarded A, , 
the second to a rewarded A, , and the thrid to non-reward. For this modelp, converges 
to one or the other of the absorbing barriers 0 and 1 as 12 - co. Also 

and 

YP, I P, = PI = h4 - 44) PS 

fwP7J2 I Pn = PI = (~A24 + 4i2P) P% (1.2) 

ELI AP, I3 I P, = PI = bA3q2 + ~2~23~2)p4, 

forall <p < 1. 
We wish to study the dependence of p, on rri and Bi when 0, is small and the drift 

E[Ap, 1 p, = p] is even smaller, 0(0,0,), although ri is bounded away from 0. Consider 
for example, the important special case 8, = 8, = 0, which arises when the same reward 
is used for A, and A, . Fix b and rr2 > 0, and define n1 by means of the equation 

i This research was supported by the National Science Foundation under Grant GP-7335. 

1 
(0 1971 by Academic Press, Inc. 



2 NORMAN 

b =: (nl - x2)/O. Th us b is the advantage of the reward probability of A, over that 
of ‘4, , relative to the learning rate parameter 8, and E[llp, 1 p, = p] = Pbpq. More 
generally, if we let d, be a fixed real number and ci and ei be fixed positive numbers 
such that clel = ceez , and let 0, = c,6’ and ri = ei + Bd, , (1.2) yields 

and 

WP, I P, = PI = TbPq + o(4 

-wPJ2 I Pn = PI = +,q + %P) Pq + O(T), (1.3) 

E[l OPn I3 I P, = PI = O(T), 

where T = 02, b = c,d, - czdz , ai = cisei , and O(T) in the first equation is actually 0. 
In Sec. 2 it is shown that, if yn = yn7 is any other family of Markov processes satis- 

fying (1.3) with y0 = p, , then (l(p,) - A(m) converges (weakly) to 0 as 7 4 0, 
uniformly in p, and no < M, for any M < 00. (l(z) is the distribution or law of 
the random variable z. In a special case, convergence is uniform over all n. This is 
an instance of an invariance theorem for asymptotic distributions (see Breiman, 1968, 
Sec. 8.6, for a simple example). As is shown in Sec. 3, the A, response probability yn 

in the N element stimulus sampling model with fixed sample size s > 1 is such a 
sequence (T = c2/(l - c) N c2, E = l/N) if the parameters of the model are constrained 
analogously to those in the linear model above. 

In Sec. 4 it is noted that there is a continuous time Markov process X, with con- 
tinuous sample paths (i.e., a diffusion) such that xnT = X,, satisfies (1.3). From this 
and the invariance theorem it follows that A(m) + cl(X,) as r -+ 0, n~--f t, and 

y,, -+ x = X0 , for any family yn of processes satisfying (1.3). In fact, the distribution 
of the entire process {yn7}nTGM converges to that of the process {X,},,, as T + 0. 
Our approach yields as a dividend some new results concerning the semigroup of 
transition operators associated with the limiting process (Sec. 5). Extension and 
sharpening of these results would permit corresponding improvement in our limit 
theorems. 

Diffusion approximations to discrete parameter Markov processes were considered 
systematically by Khintchine (1948), and similar approximations have established 
their usefulness in population genetics (Kimura, 1964; Watterson, 1962) and other 

areas (Iglehart, 1968). Previous results (Norman, 1968c, Theorem 3.1 and Lemma 5.3) 
show that, for the linear and stimulus sampling models considered in this paper, 
the A, response probability p, is approximately normally distributed with mean p, 
and variance Y(W) u(p,) [see (1.4) b e ow for u(p)] when Y  = 0 or E is small and nr GM. 1 
Since all the mass of /I(p,) accumulates at 0 and 1 as n + co, this approximation 
clearly becomes useless for larger values of n, and this failure was a major impetus 
to the present study. The approximation cl(X,,) to Jp,) obtained in this paper, valid 
at least in nra < M, is much more satisfactory in this regard. 
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In Sec. 6 it is shown that 

under hypotheses that include linear and stimulus sampling models, as well as families 
of processes with other functions 

b(P) = !‘$ T-lwPn I P?z = PI 

4P) = v+y ~-l-wP,)” I P, = PI 
(1.4) 

than those arising in (1.3). T(p) is th e solution of the differential equation, 

b(P) T’(P) + MP) T”(P) = 0, (1.5) 

for which F(O) = 0 and r( 1) = 1. Mosteller and Tatsuoka (1960) proposed that r(p) 

for certain linear models could be approximated by the solution @ of 

-wPn I P, = PI @‘(PI + &wPJ I Pn = PI D”(P) = 0 

with Q(O) = 0 and Q(1) = 1. It is easy to show that, for the families of linear models 
considered above, Q(p) ---, r(p) as 0 --f 0, hence D(p) - r(p) --f 0 as 8 + 0. Thus, 
our results yield an analytical justification for Mosteller and Tatsuoka’s approximation. 
When a(p) and b(p) are given by (1.3) and a, = a2 = a, 

(1.6) 

and r(p) + r(p) as 6’+ 0 for the linear model with ci = c2 follows from Norman 
(1968b, Theorem 4, or 1968a, Theorem 1 of Sec. III). 

2. INVARIANCE THEOREMS 

The distribution of a Markov process {Xn}nao with state space S is determined, 
up to specification of the distribution of X,, , by its transition probability or kernel 

qx, A) = P(X,+, E A 1 x, = x), 
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or, equivalently, by the transition operator 

V(x) = j L(X! dY)f(Y) = E[f(&,l) I x’k = xl, (2-l) 
S 

on bounded measurable real valued functions f. Clearly V is positive (Vf 3 0 if 
f  3 0), preserves constant functions, and is a contraction (I V’ 1 < 1 f  / where 
1 g 1 = SUP,.~ I g(x)i). For all n 3 0 the n step transition probabilities 

L(n’(x, A) = P(X,+, E A I Xk = x) 

bear the same relation to the n th iterate V” of V that L = L(l) does to V = V’: 

The operator V” is our basic tool for studying the distribution Ltn)(x, *) of X, when 
X,, = x. I f  P and Q are two probability distributions on a real interval I, then P - Q 
is regarded as close to 0 (in the weak sense) in so far as 

is close to 0 for bounded continuous functionsf(f E C(I)). Thus, if S C I, L(n)(x, .) - Q 
is close to 0 in so far as Vnf(&x) - j’,f(x) Q(dx) is close to 0 forf6 C(I). 

For x E S let 

q(x) = j L(x, dy)(y - x) = E[dXn / xn = x], 
s 

nz(x) = 
s 

L(x, dy)(y - x)” = E[(AX,)Z I X, = x], 
s 

and. 

n3(x) = j L(x, dy) 1 y - x I3 = E[ldX:, I3 1 X, = x], 
s 

be the transition moments of L. Let ur(x), ~a( x , and u3(x) be the transition moments of ) 
a kernel K with transition operator U in an interval I that includes S. Suppose that U 

preserves smoothness to the extent that Uf E C3(1) whenever f E C3(1). (F(l) is the set 
of real valued functions on I with k bounded continuous derivatives; Co(I) = C(I).) 
Lemma 2.1 and Corollary 2.2 show that, for f E C3(1), 7Jnf and Pf will be approxi- 
mately equal if ui and VJ~ are approximately equal, i = 1, 2, u3 and ~1~ are small, and 
the derivatives (Ukf)(j), j = 1, 2, 3, k < n are not large. These very general bounds 
will be combined with bounds on (U’“f)‘j’ for the linear model (Lemma 2.3) to yield 
our invariance theorems (Theorem 2.4 and Corollaries 2.5 and 2.6). 



SLOW LEARNING WITH SMALL DRIFT 

LEMMA 2.1. Forf~ C3(I) and n > 0 

5 

(2.2) 

h, = /~1-vJ, h, = I uz - ~2 l/L and h, = (I ~3 I + 1~3 IW 

Throughout the paper j g 1 denotes the supremum of 1 g(x)1 over the largest set 
on which g is defined, e.g., I in the case of ua and S in the case of ur - vr . 

Proof. For x E S 

cPf(x) - V”f(x) = Ug(x) - Vg(x) + V( u-y - L-f)(x), (2.3) 

where g = lJn-rj. Since V is a contraction, 

1 V(cFf - V”-lf)(x)l < / u-y - V”-‘f 1. (2.4) 

The other term on the right in (2.3) is rewritten 

where 

Gd-4 - v&9 = [Qw - g(x) - ma 
- PM4 - g(x) - Q(x)1 + P%(x) - G&)1, 

and 

Fg(x) = z&)g’(x) + 2-1u,(x)g”(x) 

Gg(x) = v,(x) g’(x) + 2%,(x) g”(x). 

(2.5) 

Substituting the third order Taylor expansion 

g(y) = g(x) + (Y - 4 g’(x) + (Y - 4”$‘(x)/2 + w I Y - x I3 I gc3’ l/6, 

] w j < 1, of g E C3(1) for f in (2.1) we obtain the basic inequality 

Similarly, 

I vi@ -g(x) - GgWl ,< Iv3 I lY3’ IF- (2.6) 

1 Q(x) - &I - Fg(x)/ G I ~3 I I gc3’ l/6. (2.7) 

Finally, it is clear that 

I Fg(4 - GiWl G I ul- VI I I g’ I + I 212 - vz I I g” l/2. 
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Taking absolute values on both sides of (2.3) and using (2.4)-(2.7), we obtain 

1 IPf - Pf 1 < 1 .?Plf - v-y 1 + 2 hi l(lFf)‘j’ I, 
j=l 

from which (2.2) follows by induction. Q.E.D. 

In Corollary 2.2 we add assumptions about how much a single ‘application of U 

increases f  (j). 

COROLLARY 2.2.a. I f  cpl I( Uf )(j) I < 5 &, 1 f(j) / for all f  E C3(1), then 

I Unf - Vnf I < max(h, , h, , h3) sj lf’j’ I 

for all n > 0 and f  E C3(I). 

b. I f  A1 = 0 and x;=, I(Uf)‘j’ 1 < 5 =&, 1 f’j’ 1, then 

p-1 3 

I Vf - Vf I G max(h , h3) 5 _ 1 ,z If(j) I. 

Proof. 
n-1 3 

I Vf - vnf I < ma44 ,4 , h3) 1 1 I( Ukf )(j) I, 
kc0 j=l 

and, under a, CL1 I( Vf)(j) I < 5’” Cyzl [ f(i) j. The proof of b is similar. Q.E.D. 

Lemma 2.3 gives suitable constants 5 for the transition operator U associated with 

the transition equations (1 .l). A s b f  e ore we assume that Bi and 7ri depend on 8 according 

to the equations 
ei = eci and rTTi = ei + 0di , (2.8) 

where ci , ei > 0 and ciei = cze2 . Clearly 0 < Bi , ri and Bi < 1 for 0 sufficiently 
small. To achieve ri < 1 for 0 sufficiently small we assume that either ei < 1, or 

ei == 1 and di < 0. Let 6 > 0 be small enough that 0 < Bi , ri < 1 for 0 < 0 < 6. 

LEMMA 2.3.a. There are constants yk > 0 such that 

,F; i(Uf )(j) I G (1 + 64 i if(j) I 
>=I 

for all k 2 1, f  E Ck[O, 11, and 0 < 6. 

b. If cl = c2 and dl = d, (so that 0, = 8, and rTT1 = r2) then 

i(Uf )(” I< B/c If (Ic) / 

(2.9) 

(2.10) 
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where 

B, = (1 - ?rl) + ?T1(( 1 - H,)L $- k( I -- Q”-1 0,). 

It is easy to show that B, = 1, B, is strictly decreasing, B,. -+ 0 as k 4 CO, and 

B, = 1 - k(k -- 1) 02c,e,/2 + O(03). (2.1 I) 

Proof. Let (Y~ = 1 - Bi , p, = alp + e1 and p, = a2p. Differentiating 

Uf (PI = f  (PI) TIP + f  (P2) 7724 + f  (P)(l - TlP - r2d9 

K times and rearranging, we obtain for (Uf)(")(p) the expression 

%kfck’(Pl) TIP + ~z’Y’“‘(P2) n24 +f ‘“‘(PN - TIP - 7724 

+ k?T,ci-'[f("-"(p,) -f+"(p)] + ka,a;-yf'~-l'(p) -f""-l'(P,)] 

+ h[7rl(a;-l - 1) + n,(l - a;-')]f+'yp). 

Taking absolute values we obtain for I( Uf )(“)(p)l the estimate 

[%‘inlP + “2kn24 + (1 - TIP - r2q)l Iftk) I 
+ k[a,ci-1e,q + a,cx-le,p] If'"' 1 

+ R I 7+x-’ - 1) + n2( I - $‘)I ) f (k-1) I. 

b follows immediately. In any case the binomial expansions of (1 - 0,)’ and (1 - Bi)k-l 
yield 

or, since 

l(uf)yp)l < [I + wh - ezrn)(q - P) + W2)l If'"' I 
+ h ~(k - i)(e2T2 - elnl) + o(q I f(k-1) I, 

elTl - e2T2 = eycldl - c2d2), 

I(uf)(k) 1 G (1 + K,e2) if(k) 1 + cke1e2 if'"-1) 1, 

for some constants Kk and C,-, (C,, = 0). Adding these inequalities, we obtain 

,i; I(uf)'j' I < (1 + &d2) If'"' 1 

k-l 
f >sl (1 + (Ki + cj> 4 If(j) I, 
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which yields (2.9) with 

yk = max(K, + Cl ,..., JL + CM , Kc). 

We recall that the transition moments ui = u~,~ of U = U, are given by 

and 

4~) = +q + O(T), 

%(P) = 4w + u2P) P4 + 44 

where 

%(P) = O(T), 

7 = 82, b = c,d, - czdz , and 2 ai = ci ei , 

Q.E.D. 

(2.12) 

(2.13) 

and each O(T) is understood to be uniform over p, e.g., 7-l 1 us / + 0 as 7 + 0. Since 
ci and ei are positive, a, is too. Furthermore, any real b and positive a, and a2 can arise 

in (2.12). [Given ai and b, let ci = flui , e, = aa , and e2 = aal where 01 < l/max(u, , u2) 
and /3 = l/(~a,u2)1/2. Then choose dI and d2 such that c,d, - czd2 = b. These choices 
satisfy (2.13) and the restrictions given just after (2.8).] The condition b = 0, a, = u2 
is equivalent to cr = c2 , dI = d, , the hypothesis in Lemma 2.3.b. In this case the 
transition moments can be written 

Ul(P) = 0, u2&') = %f'q + O(T), and %(P) = O(T). (2.14) 

Let / be a set of positive real numbers with infimum 0, and, for every 7 E J let 

V =: V, be a transition operator in a subset S, of [0, 11, with transition moments 
vi =- vi,., . 

THEOREM 2.4.a. If  voi satisfies (2.12) (for p E S,) then 

I Vf - vnf I < o(l)[exp(y,nT) - 11 i If(j) I, 
j=l 

for :r E J n (0, P), n > 0, and f E C3[0, 11. 

b. If vi sutisjies (2.14) then 

1 unf- vnfl < O(l)[l - eXp(-nlc12nT)] 5 If"' 1. 
j=2 

(2.15) 

(2.16) 

Here o(1) depends only on 7 and converges to 0 as 7 + 0. 

Proof. Apply Corollary 2.2.a. Under a above max(h, , hss, hs) = O(T). Since 

ex ;> 1 + x we can take 5 = exp(7y,), according to Lemma 2.3.a.;Thus 
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The inequality (2.15) follows on noting that [exp(y,~) - 1117 is bounded away from 0. 
For (2.16) use Corollary 2.2.b with 5 = exp(-r,H,“), in accordance with Lemma 
2.3.b. Q.E.D. 

COROLLARY 2.5.a. If  vi satisfies (2.12) then 

for every f  E C[O, 11 and M < co. b. I f  vi satisfies (2.14) then 

Proof. For f  E C3[0, I] these statements follow immediately from Theorem 2.4. 
If  f  E CIO, l] and E > 0, let fc be a polynomial with j f  - fc 1 ,< c. Since 7Jn and V” 
are contractions 

I Vf (p) - Vnf (p)l G 2E + I U”fAP) - wxP)l~ 

The result then follows on taking the relevant sup over p and 1z, then the lim sup 

as r + 0, and finally letting E + 0. Q.E.D. 

Let K, and L, be the kernels of U, and V, , respectively. Statement (2.17) is what 
we mean when we say that KY)@, .) - Ly’(p, .) converges weakly to 0 as 7 - 0, 
uniformly in p and rz~ < M, while (2.18) is the definition of weak convergence of 

Kr’(P, .) - Lr’(p, .) to 0, uniformly over p and n 3 0. 

The transition operator U, for the linear model plays a distinguished role in 
Theorem 2.4 and Corollary 2.5. There is an interesting variation of these statements 
that makes no reference to the linear model. 

COROLLARY 2.6. Theorem 2.4 and Corollary 2.5 remain valid if U, , 0 < 7 < 8 
is any family of transition operators on [0, l] that satisfies the same condition [(2.12) or 

(2.14)] as V, . 

Proof. Let Us,, be the transition operator for the linear model. Then for p E S, 

I Ur?f(p) - V,“f(P)l < I W,,f(P) - UT”f(P)l + I U&f(P) - V7”f(P)I. 

Take the appropriate sup and apply the corresponding previous result to each of 
the terms on the right. Q.E.D. 
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3. A STIMULUS SAMPLING MODEL WITH Two ABSORBING BARRIERS 

#Consider the A, response probability yn for the N element stimulus sampling model 
with fixed sample size s (see Norman, 1968a, pp. 285-286.) A model analogous to 
the two-absorbing-barrier linear model is obtained by assuming that the probability 
(1 - n,) cl2 ((1 - ~a) cai) that non-reward follows A, (A,) and effectively reinforces 
A, (A,) is zero. Let TV’ = 7ricii be the probability that Ai is followed by effective 

reinforcement. The transition equations for the finite Markov chain yn in S = 
(j6 : 0 < j < N} are 

i 

5 with prob. 4j(~n , l ) F rrr’ 

Ay, = -ke 
s-k 

with prob. &(yn , l ) s xa’ (3.1) 

0 with prob. 1 - ynnrl’ - .z~T~‘. 

Here E = l/N, z = 1 - y, 0 < j, k < s, and &(y, G) = 4&z, 6) is the hyper- 
geometric distribution with parameters y, s, and N: 

If  s = 1 then yn = y,, for all n. Hence we assume that s > 2. Assuming also that 
mi’ > 0, yn eventually enters one of the absorbing states 0 or 1. 

We now compute the transition moments of yn . Clearly 

E[(AyJ” 1 yn = y] = cnh f  (rr,‘M[(s - k)“k] + T,‘( -1)” M[km(s - k)]}, (3.2) 

where M[f(k)] is the expectation for the distribution &( y, l ). The only such expecta- 
tion we need is 

M[(s - k)k] = s(s - 1) yz/l - E. 

Equations (3.2), with m = 1, and (3.3) yield 

“1(Y) = 47’ - n,‘)(s - 1) yz/l - E. 

Taking m = 2 in (3.2), writing ri’ = 01 + hi , and noting that 

M[(s - k)2k] + M[(s - k) k2] = sM[(s - k)k], 
we obtain 

(3.3) 

(3.4) 

v2(y) = E%(S - l)(ol + X) yz/l - E, (3.5) 
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where 
h 1 a. max(I h, /, i AZ ). (3.6) 

Finally, using pa < scan in conjunction with ~~(31) I< l “spl*V[(s - k)k], which 
comes from (3.2) on noting that TV’ < 1, we obtain 

zig(y) < 2s2(s - 1) yz/l - E. (3.7) 

These precise formulas will be needed in Sec. 6. For our present purposes we write 

7ri’ = 01 + +$ ) 

where 1 3 01 > 0, and /3i < 0 if 01 = I, and obtain from them 

V,(Y) = TbY% +qy) = Tayz + O(T), V3(Y) = 44, (3.8) 

where T = <2/l - E, b = (s - 1)(/J - p2), and a = s(s - 1)ol. 
Let L, be the corresponding transition probability, and let K, be the transition 

probability for any family of linear models [see (2.8)] with the same b and with 

a, = a2 = a [see (2.13)]. Since (3.8) is of the form (2.12), Ly’(p, .) - Kj”‘(p, *) 
converges to 0 as T -+ 0 (thus E and 0 -+ 0), uniformly in p and 71~ < M, by Corollary 

2.5.a. If  /3i = p2 so that b = 0, (3.8) is of the form (2.14), thus convergence is uniform 
over p and n by Corollary 2.5.b. 

4. DIFFUSION APPROXIMATION 

We wish to show that there is a diffusion X, such that the transition moments of 

X7l T = X,, satisfy (2.12). I f  P(t) is the time t transition probability or kernel for such 
a process, 

qt, x; B) = qx,,, E B / x, = x), 

then P(t) satisfies the Chapman-Kolmogorov equation 

P(s + t, x; B) = I’ P(s, x; dy) P(t, y; B). 

Also (2.12) takes the form 

and 

5 P(T, x; dY)(Y - x> = 44 + O(T), 

s P(T, x; dy)(y - WY)” = nz(x) + O(T), 

s P(T, 2; dY> I Y - x I3 = O(T), 

(4.1) 

(4.2) 
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where 

b(x) = bx(1 - X) and u(x) = (q( 1 - X) + a& X( 1 - X). 

As usual, it is convenient to introduce the corresponding transition operators 

(4.3) 

TtfG4 = 1 PC t, xi dYlf(Y) = -q.f(&+s> I xs = 49 (4.4) 

for f  bounded and measurable on [0, 11. Such operators form a senaigroup, i.e., T,, 
is the identity operator, and T,+t = TsTt , the latter by virtue of the Chapman- 
Kolgomorov equation. From (4.2) it follows, via the third order Taylor expansion 

off6 C3 [0, 11, that 

as 7 + 0, uniformly in 0 < x < 1. The problem of showing that there is a diffusion 
with certain properties thus leads us to an analogous problem for semigroups. The 
discussion below of W. Feller’s approach to this problem is based on Mandl’s (1968) 
presentation. 

A semigroup (T,},>, of bounded linear operators in a Banach space B is said to be 
strongly continuous if, for every f E B, T,f is continuous in t with respect to the norm 

of B. The infinitesimal operator A of such a semigroup is the linear operator defined by 

Af = 1,irr t-‘(T,f -f ), 

for f in the domain D(A) of A, the set off for which this limit exists with respect to 

the norm of B. The semigroup is uniquely determined by A. I f  f E D(A) then 
Tt.f E D(A) and 

$ Ttf = AT,f = T,Af. (4.5) 

Let I be a closed bounded interval and C(I) the Banach space of real valued continuous 
functions on I with the sup norm 1 . 1. A strongly continuous semigroup Tt on C(I) 

is contractive if 1 T,,f 1 < 1 f 1 for all f E C(I) and Tt maps nonnegative functions into 

nonnegative functions. A contractive semigroup is conservative if TJ = 1. 
:Let a(~) and b(x) b e as in (4.3) with ai > 0. ForfE C[O, l] with two continuous (but 

not necessarily bounded) derivatives on (0, 1) and for 0 < x < 1 let 
1 ay af 

Af (x) = z +) ax2 (x) + b(x) ax W (4.6) 

I f  Af(O+) and Af(l-) exist, put Af(0) = Af(O+) and Af(l) = Af(l-). 
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LEMMA 4.1. The linear transformation A on 

D(A) =: {f : /y(O) = /If(l) = 0) 

is the infinitesimal operator of a conservative semigroup T, on CIO, 11. 

Note that C2[0, I] C D(A), though the examplef(x) = .v3/2 shows that the two sets 
are not equal. 

Proof. The differential operator (4.6) h as accessible (in fact exit) boundaries 

(see Mandl, 1968, 1, II). Thus, for h > 0 and f E CIO, l] the equation XF - AF = f  
has the unique solution 

F = F, + h-lf(0) u0 + X-y(l) ui 

in D(A) (Mandl, p. 34). It is easy to show that F > 0 if f  > 0, F = X-l if f  = 1, and 
D(A) is dense in C[O, 11, so the existence of a contractive semigroup Tt with infini- 
tesimal operator A follows from the Hille-Yosida theorem (Mandl, 1, I). The equation 
F = X-l for f  = 1 implies that Tt is conservative. Q.E.D. 

Any conservative semigroup corresponds, via the first equality in (4.4), to a unique 
transition probability P. For any t > 0, P(t, X; B) is a probability measure in its third 

argument, is measurable in its second, and satisfies (4.1). 

LEMMA 4.2. The semigroup of Lemma 4.1 satisjies (4.2). If b = 0 so that b(x) = 0, 

s P(T, x; dy)(y ~ x) = 0 (4.7) 

forallr>OandO<x<l. 

Proof. For any strongly continuous semigroup on C[O, l] 

$ T&x) = T,A2f(x) 

if f E D(A2) = D(A) n A-l(D(A)). H ence the second order Taylor expansion of 
TJ(x) about t = 0 gives 

Thus 

I TtfM -f(x) - tAfW/ G Goyspt I TsA2ffxK 

I T&4 -f(x) - tAf(x)l G P/4 I Ml (4.8) 

if Tt is a contractive semigroup. Applying this to f%(y) = (y - x), and noting that, 
in the case at hand, Af,(x) = b(x) and supoGzGl I Azf, 1 < co, we obtain the first 
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equation in (4.2). The second is similarly obtained with f&y) = (y - x)“. Applying 

(4.8) to fz(y) = (y - x)” we get 

T,fz(-4 = Wh (4.9) 

from which the last equation in (4.2) f  o 11 ows on taking the $ power of both sides and 

recalling that W3[] 2 I31 < E1/4[Z4] for any random variable Z. 
Let h(x) = x. I f  b = 0 then Ah = 0, so (d/dt) T&x) = 0 by (4.5). Thus T&(x) = 

h(x:), which is (4.7). Q.E.D. 

The last equation in (4.2) implies that 

1 - 
lim - 

J r-0 7 lg-rl>6 
P(T, x; dy) = 0, 

uniformly in x, for any 6 > 0. This, in turn, implies that there is a diffusion {Xt}tao 
with transition probability P (see Mandl, 1968, Theorem 5 of Ch. I). By Lemma 4.2 

P(T), the transition probability associated with xnr = X,, , satisfies (2.12), and, 
if b = 0 and a, = ua, (2.14). Thus we can apply Theorem 2.4 and Corollary 2.5 to 
V, = T, and Corollary 2.6 to U, = T, . Note that T n = T,, . T 

THEOREM 4.3. If  L, , 7 E J, is any family of transition probabilities satisfying (2.12), 
thert Ly)(y, 0) converges weakly to P(t, x; .) as 7 + 0, no + t, and y  + x. 

Proof. As we have just observed, Corollary 2.6 gives 

Fi ;zi I TmfW - V,“f(y)l = 0. 
n&4 

Hence, 

V,“f b) - Tmf (y) - 0, 

asT+O,nr+t, andy+x. But 

I Tmfb9 - Ttf(4 G I Tn,f(y) - Ttf(r)l + I TtfW - Ttf(4 
< I Tdf - f I + I Ttf (y) - Ttf (9, 

where d = j no - t /, and the right side converges to 0 as nT + t and y  + X. Thus 

VTnf (y) - Ttf (4 
as 7’ + 0, nT + t, and y  -+ x. Q.E.D. 

Let L, satisfy (2.12) and let yn7 be a corresponding family of Markov processes. 
The proof of Theorem 4.3 can be extended to obtain the following generalization: 
The joint distribution of ynl ,..., yn, , where 0 < n, < n2 . . . . converges weakly to that 

of Xtl )...) Xt,asr+O,njr+tj,andy,+x=X,. 
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If L, satisfies (2.12) with all o(T)‘s replaced by O(G tL,) for some I -;: v  > 0, a more 
striking generalization is obtained. Reexamination of our work above shows that 
the stronger hypothesis, with v  = 4, is satisfied by the linear and stimulus sampling 
models, as well as by X,,, . Let St7, t < M, be the continuous time stochastic process 

defined by lY,, = yn’, and by linear interpolation for other values of t. Let L,“‘(y, .) 

be the distribution of the process x7: 

L,“‘( y, B) = I’(/%? E B 1 y,,’ = y) 

for Bore1 subsets B of C[O, M]. Let P(x, .) be the distribution of X-, , t < M: 

P”(x, B) = P(X E B / X,, = x), 

THEOREM 4.4. L,“‘( y, *) converges weakZy to P”‘(x, .) as 7 + 0 and y  + x. 

Proof. Since the finite dimensional distributions of Lg+‘(y, -) converge weakly 
to those of P(x, 0) it suffices to show that there is a constant C such that 

for all r E J, y  E S, , and 0 < t, , t, < M (Billingsley, 1968, Theorems 12.3 and 8.1). 
This follows from the special case t, = k7, t, = (k + n)r, which we now check. 

When the error terms in (2.12) are O(G+“), the term o(1) in (2.15) can be replaced 
by O(Y), and, as in Corollary 2.6, we can replace 11 in (2.15) by T, . Since (eZ - I) < 
xe” for x > 0, we finally obtain 

for some K and all nr < M and f E C3[0, I]. Applying this to f,,(x) = (X - y’)” and 
noting that T”(n7) < (nT)l+“, we see that 

I Tmf&‘) - v”fAr’)l < W++“, 

for some IS and all no < M and y’ E S, _ It now follows from (4.9) that 

E[(Yk+n - y’)” j yk = y’] = vnf,,(y’) ,( K”(,.?T)‘+“, 

from which 

E[(Yk+n - yk)4 I y. = y] < K”(nT)l+Y 

is obtained on integrating with respect to Lck’(y, .). Q.E.D. 
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5. SOME PROPERTIES OF Tt 

In this section it will be shown that the semigroup Tt of Lemma 4.1 inherits the 
properties of the discrete parameter semigroup Urn of the linear model that were 
crucial for Theorem 2.4. These properties permit an alternative approach to the results 
of the previous sections, and suggest some extensions. 

P[O, l] is a Banach space with respect to the norm 

lflk = i If”’ I. 
j=O 

Let U, be the transition operator for any family (2.8) of linear models with the same 

ai and b [see (2.13)] as in the infinitesimal operator A of Tt [see (4.3) and (4.6)]. And 
let yk be as in Lemma 2.3. 

THEOREM 5.1. For any k > 0, Tt is a strongly continuous semigroup in C”[O, I], and 
iIJTn converges strongly in C”[O, l] to T, as 7 + 0 and nr + t. For any f E Ck[O, 11, k 3 1, 

2 I(TtfY) I < exp(tnJ i If(j) I, 
i=l j=l 

and,ifb=Oanda,=a,, 

l(T,f)(“) 1 < exp(-k(k - 1) cle,t/2) 1 f(“) I. (5.4 

Proof. Let D = np=, Ck[O, 11. By Theorem 2.3, / Unf - T,,f lo - 0 (as 7 - 0 
and wr + t) forf E C3[0, I]. Also I T,,f - Ttf lo - 0 for f E CIO, 11. Hence, certainly, 
1 Unf - T,f j,, + 0 for all f E D. Suppose, inductively, that Ttf E C”[O, l] and 
j Unf - Ttf Ifi - 0 for some k 3 0 and all f E D. By (2.9) 

!l I(Vf j(j) I < exp(nry,) f  1 f(i) 1 
j=l 

(5.3) 

for m > 1 and f E P[O, 11. Hence I( U”f)(“+2) 1 is bounded as no + t, so that 
(Unf )(k+l) is bounded and equicontinuous. Since (U”f)(“) converges to (Ttf )(k), 
Tt,f E @+l[O, 11, and any uniformly convergent subsequence of ( Unf )fk+l) has limit 

(Ttf )(lc+l). Thus the full sequence ( Unf)(k+l) converges uniformly to ( Ttf )(li+lb, so 
that / Unf - Ttf Ik+i + 0. By induction Tt maps D into D and / Unf - T,f Ik + 0 
for all k 3 0 and f E D. 

But D is dense in Ck[O, l] and, for f E Ck[O, I], 1 Unf IL is bounded as n7 ---f t, hence 
by the uniform boundedness principle, Tt is a bounded linear operator on C”[O, I] and 
j Lrnf- T,fIk+Oforallf~Ck[O,l]. 
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Inequality (5.1) follows from (5.3) on taking the limit as n + x. Similarly, (5.2) 
follows from 

;( u’lf)‘“’ I < B,<‘l if’“’ /, 

which is an immediate consequence of (2.10), and (2.11). 
Inequality (5.1) implies that 1 T,f lIr < esp(ty,) 1 f  1,; for f~ CY[O, 11, so that 

1 Ttf Ik: is bounded when t is. An inductive argument shows that 1 T,f - f lk ---f 0 as 

t + 0 for f E D and k > 0. Thus strong continuity of Tt on C”[O, l] follows from the 
uniform boundedness principle. Q.E.D. 

The properties of T, obtained in Theorem 5.1 appear to be new. Had (5.1) and (5.2) 
been available at the onset, T, could have been used in place of U, in Theorem 2.4 
and Corollary 2.5, thus eliminating Lemma 2.3. Were similar bounds available for 
other semigroups, the scope of these results could be correspondingly extended. And 

better bounds on ( Ttf)(i’, j = 1, 2, 3, would permit the conclusion 

sup j T,,f - I’,‘Lf 1 --) 0 
?Z>O 

(5.4) 

as T + 0 for f E CIO, I] (Corollary 2.6) to be generalized beyond the case b(x) = 0, 
a(~) = ax(l - x). Let us consider the latter possibility in more detail. 

I f  a(x), b(x) E C[O, I], U(X) > 0 onO<x<1,a(i)=b(i)=O,i=O,l,andAin 
(4.6) has accessible boundaries, then Lemma 4.1 is valid for this operator. I f  
P(t, x;{i}) = q(t, X) for i = 1, 2 and 

then 

Stf (x) = I,, 1) w xi dY)f(Y), 

Ttf (x) = m,(t, x)f (0) + m,(t, x)f(l) + Stf (x), 

for f E C[O, 11. It can be shown that m,(x, t) ---f r(x) and m,(x, t) -+ 1 - r(x) as 
t ---f co, where r is the solution of ilr = 0 for which r(O) = 0 and P(l) = 1. Also 
P(t, x; (0, 1)) + 0, so that &f(x) + 0 as t --f CO. Thus Ttf (x) --f f (O)(l - r(x)) + 
f (I)r(x) as t -+ co. The result for k > 2 in (5.2) . IS now seen to depend on b(x) = 0 
(hence r(x) = x and P)(X) = 0). However, if we consider only f in 

C$ = {f E cqo, 1] : f(0) = f(1) = O}, 

exponential convergence of l(Ttf)(“) / to 0 for K > 0 is still a possibility. For such f, 
Ttf = S,f. We conjecture that 

480/8/l -2 



18 NORMAN 

for some p > 0, K < CO, and all f~ C,3 under (4.3) and, in fact, for much more 
general a(x) and b(x). Perhaps this question can be approached by way of the theory 

of eigenfunction expansions (McKean, 1956). 
Writingf~ CIO, I] in the form 

where 

we see that (5.4) holds in general if it holds for 1, for r, and for functions that vanish 
at 0 and 1. If  (5.5) is satisfied, if a(x), b(x) E Caz[O, 1] [this implies (4.2)], and if V, also 

satisfies (4.2) then the method of Sec. 2 yields (5.4) for functions that vanish at 
0 and 1. Equation 5.4 is trivial if f  = 1. Finally TJ = r and, analogously, V,y = y, 
where y  is the probability that yn + 1 as n - 00. Thus, 

so that (5.4) holds for f  = r if, as in the next section, 1 r - y  1 ---f 0 as 7 + 0. 

6. ABSORPTION PROBABILITIES 

We have seen that the distribution of a Markov process yn7 in S, C [0, 1] 

with V,(Y) - T&Y), 4~) - T@(Y), and ma(y) = O(T) can sometimes be approximated 
by the distribution of X,, for a diffusion X, . Thus it is natural to inquire whether 
the probability y(y) of absorption at 1 starting at y  can be approximated by the 

camparable quantity r(y) for X, . r(y) is the solution of (1.5) for which r(0) = 0 

and r(1) = 1. In this section we will show that such an approximation is valid under 
hypotheses that are more restrictive than those of Sec. 3 with respect to the mode of 
convergence of 7-$(y), but more general with respect to the form of the limit. 

Our assumptions are as follows: J is a set of positive real numbers with infimum 0. 
For every 7 E J, V, is a transition operator on S, C [0, 1] with transition moments wi . 
Zero and one belong to S, and are absorbing, i.e., L,(i, {i}) = 1, i = 0, 1, where L, 
is the kernel of V, . The functions a(y) and b(y) are in C,l[O, 11, a(y) > 0 for 

0 0: y  < 1, and 

Y(Y) = 24YMYh 

0 .< y  < 1, has finite limits at 0 and 1. Putting r(O) = r(O+) and r(1) = r(l-), the 
extended function Y  belongs to Cr[O, I]. All of the quantities 

and 

6, = l(7-‘w1 - b)/ul, 
6, = 1(7-Qlg - u)/al, 

6, = I T-19&2 1 
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(the suprema are over S, n (0, 1)) converge to 0 as 7 --f 0. Finally, Lj”)(y, .) converges 
weakly as n --f a3 to a distribution concentrated at 0 and 1, i.e., there is a function 

y  = yT on S, such that 

Pf(Y> --f(O)(l - r(r)) + f(l) Y(Y) 

as n --f co for all f  E C[O, I]. Under these conditions we have the following result. 

THEOREM 6.1. As 7 -+ 0, / yr - F 1 + 0, where r is the solution of (1.5) with 

r(o) = 0 and r(l) = 1. 

For the linear and stimulus sampling models a(y) and b(y) are of the form (4.3), and, 

going back to (1.2) and (3.4)-(3.7), ‘t ’ 1 is easy to show that the Si converge to 0. For these 
models one has almost sure convergence to 0 or 1, and this implies the weak conver- 
gence assumed above. Thus Theorem 6.1 is applicable to both models. 

Rewriting (1.5) 

r”(Y) + Y(Y) r’(Y) = 0, 

we see that r’(y) = K exp(-Z(y)) where Z(y) = J-i r(z) dx and K # 0. Hence 

r(y) = J-i exp(-Z(x)) dx 

.ft exp( -Z(x)) dx 

In the special case (4.3) where a, f  aa [if a, = a2 see (1.6)] 

qy) = h(Y) ~ h(O) 
h(1) ~ h(0) ’ 

where 

and 

h(y) = \(‘dl - Y) + %y)’ PfO 
w41 -Y) + %Y) P = 0, 

p = 1 + 26/(a, - UJ. 

Proof of Theorem 6.1. Let f = fc be the solution of 

f”(Y) + e>f ‘(Y) = E 

such that f ‘(0) = 1 and f (0) = 0, i.e., 

(6.1) 

f(y) = j:f ‘(4 & 

f’(y) = ecZ(“)[l + E 1,” eZ(“) dx]. 
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Suppose that 1 E / is sufficiently small that f’(y) > 0 for all 0 < y  < 1. Clearly 

If’ 1 < co. Thus If” 1 < co by (6.1) and 1 f@) 1 < co by the derivative of (6.1). 
From (2.7) we get 

V(Y) -f(Y) = 4YY)f'(Y) + 4YV"(Y)Pl + [(+f4Y) - b(Y)lf'(Y) 
+ (T-%(Y) - 4rW'(r)/2 + XT-%(Y) If'"' //61h 

where I h I < 1. Fory E S, A (0, 1) this yields, on dividing by ~a(~)/2 and using (6.1), 

2(WY) -f(YW4Y) = E + 4% If’ I + 6, If” I + 6, If’“’ l/3)7 

where 1 w / < 1. If  7 is sufficiently small that the quantity in parentheses on the right 
is less than / E 1 (we write 7 < 6) then I/f(y) -f(y) has the same sign as E. Since 
V!(i) = f(i), i = 0, 1, we conclude that 

V(Y) 3 f(Y) if E > 0 and WY) G f(Y) if E < 0 

for all y  E S, when 7 < 6. Since V is linear 

I/g(Y) 2 g(y) if E > 0 and 

if 7 < 6, where 

VdY) G g(y) if E < 0 (6.2) 

g(y) = &(Y) = f(YMU). 

Applying V” to both sides of (6.2) we see that Vng(y) is a monotonic sequence, hence 

V”g(y) > g(y) if E > 0 and Pg(y) < g(y) if e < 0. 

Letting n + co and nothing that g E CIO, l] with g(1) = 1 and g(0) = 0 we obtain 

g,(Y) G T%(Y) G S-<(Y) 63) 

for all y  E S, , if E > 0 and T < 6. 
It is easily shown that g(y) is noncreasing, hence 

&(Y) G&(Y) = T(Y) G &c(Y). (6.4) 

Combining (6.3) and (6.4) we obtain 

I YT - r I G I g-c - g, I 

for T sufficiently small. Since E > 0 is arbitrary and 1 g-, - g, 1 + 0 as E + 0, 
]y,---/+Oas7+0. Q.E.D. 
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