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EVIDENCE AGAINST SELF-TERMINATING MEMORY SEARCH

FROM PROPERTIES OF RT DISTRIBUTIONSl

Saul Sternberg
Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Models that incorporate a self-terminating series of
component operations are among the most popular explanatory
devices in contemporary cognitive psychology. In instances
where the order of the components may vary from trial to
frial and are not under experimental control, it has proved
somewhat difficult to discriminate such models from others.

Examples of such models are the self-terminating memory-
search processes recently claimed to underlie character-
classification and 1-1 choice (e.g., Theios, 1973) and
context-recall (Sternberg, 1967a).

The present paper introduces two new properties of the
reaction-time (RT) distributions produced by a broad class
of self-terminating processes. (A third property is intro-
duced in an appendix.) These properties, which are not
captured by the usual mean and variance statistics, are
represented by dominance relations among cumulative distri-
bution functions (cdf's) of RTs, or among cdf's that have
been transformed by rescaling the probability axis. Tests
of the properties applied to data from several experimental
paradigms yielded negative results. Models embodying self-
terminating memory-search processes that have been proposed
for classification and choice behavior must therefore be
gquestioned. :

The paper is organized in two main sections: an informal
fext that presents main ideas and results, and an appendix
containing derivations, elaborations of the ideas, and sup-
plementary analyses of data.

lPaper presented at the annual meeting of the Psychonomic
Society, St. Louis, November 1973.
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EVIDENCE AGAINST SELF-TERMINATING MEMORY SEARCH

FROM PROPERTIES OF RT DISTRIBUTIONS1

‘Saul Sternberg2
Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

This paper is concerned with certain models of
reaction time (RT) that incorporate a process of self-
terminating memory search. By self-terminating I mean
that the search stops as soon as the stimulus is found, so
that not all of the stored items need be searched on every
trial. Such models are very attractive, and have been
receiving a good deal of attention lately.3 They are

lPaper presented at the annual meeting of the Psychonomic
Society, St. Louis, November 1973. :

2I thank the John Simon Guggenheim Memorial Foundation for
its fellowship support during the period in which the
reported work was begun, and the Department of Psychology
at University College London for its hospitality.

3Models that incorporate a self-terminating series of
component operations are among the most popular explanatory
devices in contemporary cognitive psychology. They have
been applied, for example, to visual search in large arrays
(e.g., Neisser, 1963), to scanning of post-exposure images
of small arrays (e.g., Sternberg, 1967b), to same-different
Judgments of simple multidimensional stimuli (e.g., Egeth,
1966; Nickerson, 1972, Sec. U4), of letter strings (e.g.,
Bamber, 1969), of faces (Bradshaw & Wallace, 1971), and of
letters (e.g., Posner & Mitchell, 1967), to 1-1 choice
(e.g., Falmagne & Theios, 1969; Falmagne et al., 1973), to
binary classification (e.g., Theios et al., 1973), to
retrieval from categorized word lists (e.g., Naus, Glucksberg,
& Ornstein, 1972), to context recall and recognition (e.g.,
Sternberg, 196%9a), to lexical decisions about multiple let-
ter strings (e.g., Meyer & Schvaneveldt, 1971), and to cat-
egorizing words in multiple semantic categories (Meyer,
1973). In most of these instances, the effects of impor-
tant experimental factors are attributed, not to differences
induced in the component operations themselves, but to '



attractive because the self-terminating property seems
plausible, and because the same search mechanism that
explains effects of the number of items stored might also,
in a natural way, explain effects of stimulus probability
and stimulus sequence.

One reason for the attention that self-
ferminating search models have been receiving most recently
is the set of ingenious arguments that John Theios has pre-
sented in several papers (e.g., Theios et al., 1973; Theios,
1973). Theios and his colleagues have proposed such models
to account for results from a variety of experimental tasks,
including the traditional choice-reaction paradigm,'where
each stimulus is assigned to a different response, and also
‘the two-choice character-classification paradigm, such as I
have studied (Sternberg, 1963; 1966; 1969a).

In this paper I report some new methods of test-
ing models of self-terminating search. Their most unusual
feature is that they permit testing the basic idea of self
termination, with virtually no additional assumptions.
That is, the tests are relevant to very broad classes of
models.

3(cont'd) changes in the distribution of the number of com-
ponents required. In those rare cases when it is believed
that the components can be specified with certainty on each
trial, this assumption, and therefore the general model,
can be tested relatively directly. In the more usual case,
the RT for even a specified trial must be regarded as
having been drawn from a probability mixture of distribu-
tions; this is the case for which the tests presented in
the present paper were designed.
uThe additional assumptions that are often made include,
e.g., (1) equality of mean durations of successive opera-
tions, (2) rules about the order of search and how it
changes in response to stimulus events, and sometimes (3)
the stochastic independence of the durations of component
operations.



-3 -

2. A SEARdH MODEL FOR 1-1 CHOICE REACTIONS

Let us start by considering search models for the

choice-reaction paradigm, as shown in Fig.

1. This is a

generalization of the kind of model advanced by Theios
(1973) for this paradigm. Suppose that the stimuli in any

1-1 CHOICE REACTION
Memory Buffer in Too Conditions

N=g N=+4
SR, SR,
Sr-fa SR, lj?;ﬁ
:_ ' 4 358,
Foomen
L SRy
Figure 1

condition are presented from trial to trial with equal

probabllity. The figure shows the assumed
set of positions in a memory buffer in two
involving two different S-R pairs, and the
Only the first two positions in the buffer
two-alternative condition. These same two

contents of a
conditions, one
other four.

are used in the
positions, along

with two others, are used in the four-alternative condition.
On half the trials in the two-palr condition, the stimulus

is found in the first position, along with the correct

response, and the second position is not searched; on the

other half of the trials, both positions are searched. On

a quarter of the trials in the four-pair condition the

stimulus is found in the first position, and the others are

not searched, and so forth.



Three assumptions are needed for our purposes:
First, the presence of information in more remote positions
in the buffer has no effect on the time to find a stimulus
that is at any particular higher position. For example, on
trials where the test stimulus is in the first buffer posi-
tion, the RT-distribution 1s the same, regardless of the
number of alternatives.5 A second critical assumption for
the properties that I shall present is that the high posi-
tions in the buffer be tightly packed. For example, in the
two-alternative condition, although the pairs are free to
change places in the buffer according to any rule, neither
of them can move to the third buffer position.

This description covers a very broad class of
models. Note that I have sald nothing about search time as
a function of number of locations searched. The strongest
assumption we need here is that moving a stimulus further -

6

down in the buffer cannot shorten the time to find it.

3. TWO IMPLICATIONS OF THE MODEL FOR RT DISTRIBUTIONS

It is easy to see the intulitive basis of the two
properties of this kind of model that I shall discuss. (As
far as I know, these properties are necessary, but not suf-
ficient, for the process to be self-terminating. That is,
i1f a set of data exhiVited these properties, this would not
require the process to be self-terminating, although 1t
would increase the credibility of such a process.)

The first property has to do with short RTs.
Whatever the number of alternatives, the stimulus 1s found
in the first buffer ppsition on some trials. Therefore,

See Section A3 for a method of estimating how large the _
required RT changes would be if this assumption were
relaxed.

5

6Seéf§é€fi§ﬁt§;1 for a more precise statement of the model.



both conditions should generate some RTs that are equally
short.

This idea suggésts examining the minimum RT in a
series of trials in each condition. But the sample minimum
is a biased estimate of the population minimum, and I do
not know of any way to evaluate its bias without making
unacceptably strong distributional assumptions. The mini-
mum has occasionally been used in RT studies--as long ago
as Donder's’ (18687, and most recently by Barry Lively (Lively

_& Sanford, 1972; Lively, 1972) and by D. H. Taylor (1965).

Donders was aware even then of the estimation problem. As
far as I know, the statistic I shall use to capture the
intuition about short RTs avoids this difficulty.

The second property has to do with long RTs. The
lowest buffer position in the four-alternative case is no
more accessible than either position in the two-alternative
case. Therefore the four-alternative condition should
generate at least as many long RTs as the two-alternative
condition.

Model: Mutures & Nested Equiprebable Components
N = number & okeds +» search

ne2: G = (RW+4R®
ned:  Glt) = JEW) +IKM® + K0 + $K®

Ergprﬁcs; @ 260 2 6®

@ GW > G®
[Requires assuming RO §8),ete]

Prerq'hjo in ferms of quastiles:
G < G

Figure 2



These ideas are made precise in Fig. 2. The F's
and G's are cumulative probability distribution functilons
(cdf's)._ Fl is the RT distribution function on trials when
the stimulus is found in the first buffer position. The
distribution F2 is generated on trials when both first and
second positions are searched, and so on. The G's corre-
spond to observed RT-distributions. Each G is an equal-

" probability mixture of F's. The word "nested" in the
description of the model means that all the F's that con-

tribute to G2 also contribute to GM'

The first inequality is mainly of interest for
short RTs. Think of the G's as giving the percentage of
RTs less than the value t¥. Suppose 40% of the RTs in the
two-alternative condition are less than 300 msec. Then the
first property says that at least half of this proportion,
or 207, of the RTs in the four-alternative condition must
be that short. 7 For different numbers of alternatives the
same kind of inequality holds, but with different multipliers.

The second inequality is mainly of interest for
long RTs. It says, for example, that if 20% of the RTs in
G2 are longer than 400 msec, then gt leagt 20% of the RTs
in GM must also be longer than 400 msec.

Taken together, the two properties mean that at
all values of RT, G2 is not only bounded above by twice GM’
but is bounded below by GM itself.

7In other words, there is a limit to how much smaller Gy can
be than G,; if it was too small, then doubling Gy could not
reverse the inequality.

8It is in order to infer the second inequality that we must
add the weak assumption mentioned above about how RT
depends on the number of positions searched. The inequal-
ity on successive F's, Fj(t) 2 FJ+l(t) (all %), says that
by any specified time an item in a higher p051tlon is at

least as 1ikely to have been found than an ifem in any
lower position.



As stated, these bounds apply to the (cumulative)
probabilities assoclated with specified RTs. However, it
1s sometimes convenient to start instead with specified
probabilities, and use the equivalent bounds between the
RTs (quantiles) associlated with them. The first property
is expressed in terms of quantiles at the bottom of the
figure. The (p/2)-percent point of the Gu-distribution can
be no greater than the p-percent point of the G2—
distribution.9 Because the quantiles to be compared
involve different probability values, such as p versus p/2,

I shall call them adjusted gquantiles.

The two properties are illustrated in Fig. 3 with

FIRST

y SECOND
RV "Secees
b @<@
RT
Figure 3

fictitious data. Each panel shows distribution functions
fqr two and four S-R pairg} with dots gnd crosses. _Thg

curve represents ZGM' In the leftmost panél bdfh pESbé}EEés
obtain: G2 never goes outside the region bounded above by
2G4 and bounded below by GM itself. In the middle panel G2

and G "march along™ i1nstead of "fanning out™ from the same

9For small values of p, this assertion looks similar to the
expected invariance of the minimum that I mentioned ear-
lier, although tests are not subject to the same bias prob-
lems. The inequality on quantiles must hold for all values
of p, @ £ p £ 1, but when testing a set of data for the
property it is sometimes convenlent to choose a single low
value of p.
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point. The result is that the first or short-RT property

is
2
above 2G4. In the right-~hand panel this does not occur,

is seriously violated: for a large range of values G

but the second or long-RT property is violated, since there
are some time values for which G4 is above G2.
4, APPLICATION TO A 1-1 NUMERAL-KEYPRESS EXPERIMENT

Now I would like to consilder several sets of data
in light of these properties. Only the first experiment
was designed with the present analysis of empirical distri-
bution functions in mind, so it is the one that should
probably be taken most seriously.lo It was a choice-
reaction experiment, with stimuli drawn from among the
numerals 1 through 8. Each numeral was assigned to a dif-
ferent finger, in a natural way, and the responses were key
presses. The three conditions involved two, four, and
eight S-R pairs. Because each condition was run several
times per session, each S-R pair could be studied in each
condition. Four subJects were run for two sessions each of
about 1000 trials; the data that I shall present are from

the second session.

Figure 4 contains just the mean RTs of correct
responses. It shows that the experiment reproduced the
classical findings in this situation (Bricker, 1955;
Brainard et al., 1962): the mean increases linearly with

This experiment was performed in collaboration with
Ronald L. Knoll.

In order that tests of the properties be valid regardless
of the rules that govern movement of items within the buf-
fer, the sequence of tested items 1in an experiment must be
an independent-trials sequence. (See Section Al.2 for an
explanation.) For tests to be completely valid, therefore,
there can be no constraint in the randomizations that
determine stimulus sequences. In all the experiments whose
data are considered in this paper except the first, random-
izations were constrained, so the conclusions must be
regarded as tentative.
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Figure 4

the logarithm of the number of S-R pairs, and the effect is

nicely invariant across subjects.ll

Figure 5 shows a RT distribution from each of the
three conditions for one subject. Each distribution
includes pooled data from all eight S-R pairs. Consider
first the relations among the distributions themselves,
before they are multiplied; these are shown by the

llA simple self-terminating search process produces a linear

function, of course (e.g., Sternberg, 1966). However, a
nonlinear function that relates mean RT to number of S-R
pairs could be produced by a self-terminating search model
if the mean times for successive search components (or
degrees of accessibility) were permitted to be unequal,
e.g., or if it was assumed that one or more registers in a
memory buffer could contain more than one S-R pair (as in
Theilos, 1973).
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unconnected symbols, and permit a test of the long-RT
property. Since the (2)-function is always above the (4)-
function, which is always above the (8)-function, this
property is satisfied. But the short-RT property is seri-
ously violated. In order for this property to hold, the
multiplied (4)-function should be at least as high as the
(2)-function everywhere, and the multiplied (8)-function
should be at least as high as the multiplied (4)-function
everywhere. But neither of these conditions is met. Put
roughly, there are not as many short RTs in the more diffi-
cult conditions as a self-terminating search-process
requires. Data from the other three subjects reveal
exactly the same pattern of results: conformity with the
long-RT property, but violation of the short-RT property.
Figures 6, 7, and 8 display the distributions for these
subjects.
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Figure 6

Figure 7

Figure 8
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5. APPLICATION TO A 1-1 NUMERAL-NAME EXPERIMENT

The second experiment I would like to consider

also used a choice-reaction paradigm with a 1-1 mapping of

stimuli onto responses, and again the stimuli were numerals.

But here the response to a numeral was the vocalization of

its name. Five highly trained subjects each worked in two

condifions, one with two S-R pairs, and one with eight.'’

Again, .the pairs of functions from each of the

five subjects violated the short-RT property. But in addi-

tion, four of the five subjects vioclated the long-RT prop-

erty as well. In Fig. 9‘data from the two extreme subjects

Vumprals {5 Tesied
SUMECT 2

SustEeT 4

Figure 9

are displayed. The pair of functions on the left are the
ones that most strongly violate the long-RT property: not
only does the (8)-function contain too few short RTs; it
also contains too few long ones. Subject 2, on the right

of the figure, 1s the one subject whose distribution func-"

13

tions violated only one of the two properties.

12

13The most noteworthy constraint in the randomization that
was used to produce the trial sequences in this experiment
was that no immediate repeats were permitted in the eight-
alternative condition. Although this might contribute to
a violation of the short-RT property, however, it is hard
to see how it could induce a violation of the long-RT
property.

This experiment was reported as Exp. V in Sternberg, 1969b.
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It appears that without elaboration, a self-
terminating search model is inappropriate for the 1-1
choice-reaction paradigm.lu Successive-dichotomization
processes, such as those discussed by Hick (1952) and by
Welford (1971), would not be embarrassed by violation of
the first property, but could not easily be reconciled with

violations of the second.

6. APPLICATION TO A CHARACTER~CLASSIFICATION EXPERIMENT:
TEST OF A MODEL OF SELF-TERMINATING SEARCH THROUGH THE
POSITIVE SET

Next I would like to turn to the character-
classification paradigm, and two varieties of self-
terminating search that have been considered as possible
models. In the first model the items searched are the
stimuli in the positive set. In the second model the items
searched are stimulus-response pairs for all the Stimuli in
the experiment. ?hé first model 1s shown in Fig. 10. The

BINARY CLASSIFICATION
. Saearch among 4 poitive sfimuli

42 x4

3 S

S S
feeaned S
R 3
. Flgure 10

response rule here 1s to initiate a positive response if
and when the test stimulus is found in the buffer, and to
initiate a negative response otherwise.

luTaylor's (1965) report of a minimum that increased markedly

with number of S-R pairs suggested this eight years ago,
and the present analysis refines the argument.
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I have previously argued (Sternberg, 1963; 1966)
that search in this paradigm is exhaustive rather than

self-terminating. This inference was based on the fact

that as positive-set size is increased, mean RTs for posi-
tive and negative responses increase at about the same rate.
But alternative explanations are avaiiable for the relation-
between RTs for negative and positive responses.15 Further-
more, if the search process were assumed to be self-
terminating, then sequential and stimulus probability
effects might be easier to explain without having to 1nvoke
properties of other stages of processing. This makes it
interesting and useful to test for self-terminating search
through the positive set by using data from positive «

responses only.

The data'that I used for the test were collected
from 12 subjects, each serving for one hour. The stimulil
were the ten numerals, and each subject was tested with

lSAn exhaustive search process alone is insufficient to

account for some features that have occasionally been
observed in RT data from the character-classification para-
digm. Without elaboration, such a process cannot explain
serial-position effects, sequential effects, or probability
effects. Since it has been found necessary to postulate
additional processing stages in addition to the search
stage (Sternberg, 1969b), it is tempting to explain these
effects 1in terms of properties of the additional stages,
and retain the exhaustiveness of the search stage.

But an alternative explanatory line to pursue that might
appear more parsimonious 1is to postulate a self-ferminating
search stage, and explain the observed relation between
times for negative and positive responses in some other way.
One possibility is that (self-terminating) search that pro-
duces a match with the test stimulus is repeated before a
positive response is initiated, whereas a negative response
is initiated after only one search. A second possibility
is that altogether different processes, possibly operating
in parallel, mediate positive and negative responses, just
as has been proposed for "same" and "different" responses
in letter-string matching (Bamber, 1969).
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fixed positive sets of size 1, 2, and 4.16 For each
subject, three empirical distribution functions were deter-
mined. The test was limited to the short-RT property only.
To simplify the analysis I used a set of adjusted quan-
tiles, rather than the cdf's themselves. The left-hand
side.of Fig. 11 may help make this clear. The unconnected

§

PQSITIVE STIMULI 44o

(12 susvecTs)
o4 .

84
164

¥

P <.00L

MEAN ADIUSTED QUANTILE (msec)

§

1 2 4
SIZE OF POSITIVE SET

Figure 11

points represent the short-RT portions of the empirical

cdf's for the three conditions, averaged over subjects. If
each subject's cdf's satisfied the first property, then

these average cdf's would satisfy it also._ From the behav-
ior of the multiplied c¢cdf's you can see that they do not:

the original ordering is maintained, even after multiplication.

Also shown with the cdf's is a 16% line. Squares

hark its intersection with Gl, with 2G2, and with HGM.

l6‘I‘his experiment has been reported briefly as Exp. IV in

Sternberg, 1969b. In the conditions whose data are consid-
ered here, positive and negative responses were equally
probable, and within positive and negative sets stimuli
were equally probable.
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These 1ntersection points deflne a set of three RTs or
adjusted quantiles: 1in particular, the 16% point of Gl’
the 8% point of G, and the 4% point of Gy. These adjusted
quantiles were determined for each of the 12 subjects, and

17

submitted to analysis of variance. Results (in terms of
means and their SE's) are shown on the right-hand side of
the figure. If the short-RT property holds, the adjusted
quantiles cannot increase with set size. But thelr
observed increase is highly significant.l8 It follows that
if it is the positive set that i1s searched by subjects in
the character-classification paradigm, then the search is

not self-terminating.

17It should be noted that sample quantiles are not, in

general, unbiased estimators of the corresponding popula-
tion quantiles. The amount of bias depends on the local
curvature of the cumulative distribution function (or the
slope of the density function). If one assumes the shape
of the tail of the distributlons in question be to approxi-
mately normal, then an approximate correction for the bias
18 available in Harter (1961). If one assumes only that
for small values of probability, a, the curvature increases
with o (as, e.g., in the normal distribution), then for
quantiles associated with small probabilities the bias
works to favor the short-RT property, so the bias cannot be
responsible for violations of the property.

Alternative methods still to be explored for testing, e.g.,
2G4 (t) 2 Go(t) in the data from a group of subjects,
include (1) Choose a particular low value of a. For each
subject find the sample quantile tgy = G, !(a) from the
empirical cdf. ©Now compare the proportions 2G,(ty) and
Go(ty) defined by the empirical cdf. The proportions in
this comparison are unblased estimates of the corresponding
population probabilities. (2) Comparison of entire func-
tions. (Note that because one of the functions is a trans-
formed cdf, the Kolmogorov-Smirnov test 1s not directly
applicable.) These alternative methods may be preferable
to the comparison of adjusted quantiles.

l8This result refines the finding (Lively & Sanford, 1972;

Lively, 1972) that RT sample minima increase with size of

the positive set.
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7. APPLICATION TO A CHARACTER-CLASSIFICATION EXPERIMENT:
TEST OF A MODEL OF SELF-TERMINATING SEARCH THROUGH
STIMULUS-RESPONSE PAIRS

Flgure 12 shows the second model I would like to

BINARY  CLASSIFICATION
Search among (ten) S-R pairs (poidive and negdtive)
Buffer Size =_a+1
[e.g. Theios et al. 1973 -
=2 PFEL
5-© S-®@
5@ 5@

Bl [0
5@
]

Figure 12

conslder for character classification. This is a generali-
zation of the model that has been advanced by John Theios
and his colleagues (Theios et al., 1973). They suggest
that what 1s searched in the classification paradigm is a
set of S-R palrs involving all stimull in the experiment,
both negative and positive, and furthermore, that this
search is self-terminating. (When the stimulus is found,
the response associated with it is initiated.) Three other
important features of their model are shown in the figure.
First, the size of the buffer varies with the size of the
positive set, even though the total number of S-R pairs
that have to be accessed remains fixed. Thus, as the posi-
tive set is increased in size, more distant buffer posi-
tions are used. Second, this can be accomplished because
the lowest of the occupied buffer positions can contain
several S-R pairs, which are accessed in parallel. Finally,
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positive and negative S-R pairs can be intermingled in the
buffer.

Because of the wvariable buffer size in this model,
the cdf-multipliers used to generate the short-RT bounds
are somewhat different from those already discussed. The
result is that the bounds are more generous. Data from the
same 12 subjects were used for this test as for the last
one, but this time I pooled data from positive and negative
r'esponses.19 For each subject I then determined
adjusted low-order quantiles that would permit making the
three pairwise comparisons among functions. Results (in
terms of means and their SE's) are shown in Fig. 13. As

ALL TEN STIMULI
S 400- EQUALLY WEIGHTED
£ (12 suscecTs)
™ 23
-l
£ 334
< SAfe K/\' 54
a w5l P54 P03 i
w %
e
I-,
-3
<
=
.
W
z
300k
1 2 Z < 1 4

SIZE OF POSITIVE SET
Figure 13

before, if the first property holds, the adjusted quantiles
cannot increase with set size. The relation between G1 and

195cesect1o8 4212 For 2 statement of the bounds in this
case and for a sample derivation. Note the importance, for
the validity of this test, of pooling in such a way that
all of the ten stimuli have equal weight in each of the

three cdf's.
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G2 satisfy the model, but in the other two comparisons the
model fails, at moderate levels of significance. With a
positive set of size four, too few short RTs are generated.

These conclusions must be somewhat tentative,
since, again, the experiment was not designed with this
kind of analysis in mind. Within this limitation, however,
the relations among the RT distributions are inconsistent
with a self-terminating search model for character-
classification in which the items are S-R pairs, even when
a memory buffer of adjustable size is postulated. I should
mention, incidentally, that self-terminating models of this
type 1n which the buffer size is fixed fare even worse in
relation to the short-RT property.go It seems, then, that
fo explain performance in character-classification in terms
of a search process, we may be forced to stick with an
exhaustive search through the positive set. In that case,
effects of trial sequence, stimulus probability, and serial
position, where they are observed, may have to be explained
in terms of their influence on stages of processing other |
than the search stage.

8. SUMMARY

In summary, I have described two properties that
hold for RT distributions from a very broad class of serial
self-terminating search models--broad enough to include all
the existing models I know of as special cases. Once they
are written down, the properties seem simple, obvious, and
weak. Yet they are powerful enough to permit us to reject
this class of models for both 1-1 choice-reaction tasks and

character-classification experiments.

See Séction A2.1 for a test of models with fixed-size
buffers.



APPENDIX

Al. DERIVATION OF THREE PROPERTIES OF THE CDF'S OF RTS
FROM SELF-TERMINATING SEARCH AND RELATED PROCESSES

Al.l1 The Model and Alternative Interpretations

We suppose that a. set of items, indexed by i,
occuples a set of states of accessibility, indexed by j.
When an item is in state j, the RT cdf for that item is
Fj(t). The idea that state k is less accessible than state
j is represented by the dominance (or stochastic order)
relation:

F,(£) 2 F (%), (all t).

This model has a variety of interpretations. The
states of an item mighf correspond, e.g., to its location
in different registers of a buffer memory (Theios, 1973),
or in different positions in a display (Sternberg,'l9é7b).
Alternatively, the items might correspond to diffefent
dimensions in a multidimensional stimulus (Egeth, 1966),
whose states differ in accessibility because they are
searched, tested, or compared in a particular order. The
states of an item might also correspond, e.g., to different
degrees of "trace strength" depending on time since the
item was last rehearsed in a recycling rehearsal process
(Nickerson, 1972, Sec. 2.2.6; Baddeley & Ecob, 1970, 1973).
(Note that in the trace-strength interpretation, if the RT
depends on the difference between éampled and criterion
trace strengths, and the criterion changes as number of
items increase, states could not correspond to trace
strengths themselves, and the available states would not be
invariant across conditions. But it will be seen that if
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the direction of criterion change is toward lower strength
with larger numbers of items, then the criterion change
cannot produce violations of the short-RT property.)

The properties to be considered do not depend on
The states being distinct. Hence, although we shall
require that each state is occupied by at most one item,
this requirement does not mean that two or more items can-
not be equally accessible [Fj(t) = Fk(t)]. (Thus, under
the buffer-search interpretation of the model, more than
one item can occupy the same register in the buffer, and
The associated subset of states would then not be distinct.)
If two items can occupy a register, then two different
states with the same distribution functions will be associ-
ated with that register. Let the states be ordered from
high to low, such that

Fy(8) 2 F(t) iff J < k.

For most applications we shall also require that
the items are "packed" into the higher accessibility states,
such that in order for a state, k, to be occupied by an
item, all states, j, of higher accessibility (j<k) must
also be occupied. It follows that if there are m different
items, the occupied states are indexed j = 1,2,...,m. Sub-
ject to this restriction, the items can move freely among
the states according to any set of rules, in response to
trial events. [For example, if two items occupy the same
buffer register in one condition, so that two states are
assocliated with that register, then there can be no condi-
tion in which fewer than two items occupy that register

while registers of lower accessibility are occupied. Where
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this packing property is not assumed, as in the Theios
(1973) variable-size buffer model, special arguments can
nonetheless sometimes be used, as in Sec. A2.2, to derive
the distributional bounds that are the focus of this paper. ]

Al.2 Equal Weighting of State Distributions in the Averaged

Cumulative RT Distribution, and Its Invariance Rela-

tive to State-occupation Probabilities

Movement of items among states will generate for
each item, i, and state, J, an occupation probability, a...

1J

Since, on any trial, each of the items must be in some
state,

m

jzl 055 = 1 (all 1), ~ (2)
and since each of the states, jJ = 1;...,m, must be occupiled
by some item,

m

} o oa.. =1, (all j). (3)

i=1 Y
Equation 3 means that the average state-occupation proba-

bilities, averaged over items, are all equal.

Now let us assume that the choice by the experi-
menter of which item must be retrieved on any trial is
independent of which items are occupying which states on
that trial. If it is thought that the occupation pattern
might depend on the previous sequence of trials then to

satisfy this independence requirement the sequence of ifems

tested mMust be an independent-trials sequence. (Note that
this does not mean that items must be tested with equal
probabilities.)
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If the independence requirement is satisfied it
is easy to form the predicted average (cumulative) distri-
bution function over items, where each item is weighted
equally in the average. For a particular item, i,

Gi(t) = g aiij(t). (4)

Hence, if G(t) is the average distribution,

S+

G(t) G, (t) = %Z I oy Fy(5). (5)
1]

L G
i
Reversing the order of summation and using Eq. 3, we get

G(t) =

=R

Z Fj(t). (6)
J

What Egq. 6 shows is that G(t) is given by an
equally weighted average of the distributions {Fj(t)},
J=1,2,...,m, for the occupied states, regardless of the
probabilities {aij}. This leads to the

Invariance Property. G(t) depends only on the set of

occupled states and not on the occupation probabilities.

(This property was not discussed in the text, but was used
in the analysis reported in Sec. 7.) Thus, if the number
of items is held constant, but operations are performed
that alter the distributions {aij} of state-occupation
probabilities, G(t) must be invariant. Properties 1 and 2,
derived below, are therefore independent of the {uij}.
Operations that have been proposed to exert their influence
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by acting on the distribution of occupation probabilities
include variations in The relative frequency with which
items are tested, and varlations in the sequential proper-
ties of trials.

Al1.3 Derivation of the "Short-RT" Property (Property 1)

This derivation makes use of the representation
provided by Eq. 6. Suppose that two experimental condi-
tions differ in the number of alternative items, and there-
fore in the number of occupiled states. Let the two numbers
be m and n, with m < n. From the Invariance Property we
know that regardiess of the {aij} in the two situations,

_ Fj(t) = nGn(t), (all t),

J

fzf

m
me(t) = jzl Fj(t) < L

so that me is bounded above by nGn, for all t. (Note that’

" subscripts on G refer here to number of items, and that G

has been definedi(Eq. 5) as an equally-weighted average

over ifems. Note a?§°WEH?PHE?E§UP?QP'”W,

ertywddes“ﬁdtrdepend,on the dominance relation of Eg.-L.)
If RT < to defines a short RT, and the proportion of short
RTs in condition m is a, this bound implies that the pro-
portion of short RTs in condition n 1s at least ma/n. Ine-

quality (7) on the distribution functions, {G}, is equiva-

lent to an inequality on the quantile functions, {G_l},

which give RT as a function of cumulative probability:

-1rq
G (=) 2 ¢

-1lra
= (

n (g, (0£a<m.

(7)

(8)
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Al.4 Derivation of the "Long-RT" Property (Property 2).

Let 0 <m < n. Then from the "packing" assump-
tion we have

G 15 1,5, . % m 1 B
=27 F, =i(JF,+J F,) =0 = .
n n % 3 n(§ 3 mélFJ) n Gyt 3 mgl FJ’ (9)

(where the argument, t, of the distribution functions, F
and G has been sup- -

pressed). Now from the dominance relation of Eq. 1, for

J < m, Fj 2 Fm+l' Hence,
m m
1 1

G == )] F., 2= ] F = F

m m i=1 J m j=1 m+1 m+1
Furthermore, for J 2 m + 1, Fm+1 > FJ Combining this with
the 1inequallity above, we have

Gy 2 Fy, (Jam+l). (10)

Replacing Fj by Gm in Eq. 9, and using Eg. 10, we get

or

Gn(t) < Gm(t), (all t, O<m<n). (11)
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In short, the dominance relation among the F's induces a
corresponding dominance relation among the G's. Combining
inequalities 7 and 11 we have

Gn(t) > Gm(t) > Gn(t); (all t3; O<m<n);

=i

for all ¢, Gm(t) must lie between Gn(t) (below) and % Gn(t)
(above).

The proportion of RTs longer than t is given by
1 - Gn(t); from Eq. 11 it follows that Gi(t) 2 G;(t).

G¥ ()
If RT > to defines a long RT and the proportion of long RTs
in condition m is B, this bound implies that the proportion
of long RTs in condition n 1s at least B.

A2, DISTRIBUTION BOUNDS FOR ASSOCIATION-SEARCH MODELS OF
CHARACTER CLASSIFICATION

A2.]1 Models with Fixed-size Buffers

In one class of models consildered, e.g., by
Theios et al. (1973) for the character-classification para-
digm, the size of the memory buffer is fixed regardless of
the size of the positive set.

If the ensemble of test stimuli (union of posi-
tive and negative sets) is also fixed, this class of models
generates remarkably strong predictions for the average
distribution Gs(t) as a function of positive set size, s.
Since the only influence s can have is on the distribution
of positions occupied by each stimulus within the buffer,
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the invariance property derived in Section Al.2 applies.

As positive set size 1s varied, the average distribution
must remain unchanged. A corollary 1s that the expectation
of Gs(t), or the mean RT averaged over stimuli, should be
invariant over changes in s. I shall denote this special
mean by u#(s).

For some experiments the mean u¥(s) with equal
stimulus weighting can be obtained as a weighted combina-
tion of the more usual statistics, up(s) and un(s), the
means for positive and negative responses. Suppose an
experiment in which posifive and negative responses are
each required on half of the trials, and the ensemble of
test stimuli is of size m. Suppose that within positive
and negative sets, stimull are presented with equal proba-
bility, and that the m-s stimuli not assigned to the posi-
tive set in a condition are assigned to the negative -set.
Then

w¥(s) = = u (s) + 522w (s).

S
m

For the character-classification experiment whose
data were used in the analyses presented 1n the text, the
mean, u¥(s), is clearly not invariant, as shown in Table 1,

Table 1
s 1 2 4
un(s) Lu2,9 480.1 550.5
up(s)' 388.5 437.0 498.9
u®(s) 437.5+13.3 U471.5+13.3 529.9%13.3
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which displays means and 95% intervals in msec based on the
data from 12 subjects.

If, as 1in the experiment reported in Theios et al.
(1973), the ensemble of test stimuli is not fixed in the
character-classification paradigm, but the buffer size is
fixed, the properties derived in Sec. Al apply, as in Egs.
7 and 11, with m and n denoting number of items in the
ensemble.

A2.2 Models with Variable-size Buffers

The model (Fig. 12) most favored by Theios et al.
(1973) and presented in Theios (1973) as an account of per-

formance in the character-classification experiment, pos-
tulates a buffer of size s+l1l, where s denotes the number of
items in the positive set. At any time, each of the first

S registers is assumed to be occupied by one item, and the
remaining items are assumed all to occupy the last register,
which is identified as a long-term'memory state. (Thus,

the accessibility of items in long-term memory is assumed

to be higher if s is smaller.) The average distribution,
GS, for this model, with an ensemble of size ten, 1s given

by

n
[}
o

J 10 s+1°

Using Eq. 12 together with the dominance relation of Eq. 1,
we obtain the following short-RT bounds for s = 1,2, and 4:
G, (t) £ 5G,(t)

G, () 5Gy (t)
3G,(t) < 106G, (t).

IN

n

(12)

(13)
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These bounds were used to determine the probabilities that
defined the adjusted quantiles of Fig. 13.

As an example, we derive the last of inequalities
(13). We have

10G, = F, + F, + 8F

2 1 2 3
1OG4 = Fl + F2 + F3 + Fu + 6F6
Hence lOGu = Fl + F2 + F3.

Now we wish to find a multiplier, k, such that kGu > G2.
This requires kF1 + kF2 + kF3 > F1 + F2 + 8F3, or (k—l)Fl
+ (k-—l)F2 + kF3 2 8F3. From Eq. 1 this is satisfied if

(k-1) + (k=1) + k 2 8, or k = 10/3.

The long~RT property follows easily from Eq. 12.
[Note that if the retrieval-time distribution, Fs+1’ asso-
clated with items in the long-term memory state is assumed
to be independent of s in Theios' variable-size buffer

model, which is perhaps more plausible, and the ensemble
size, m, is fixed, then Gs+l(t) 2 Gs(t), implying u¥*(s+1)
< u¥(s), which is clearly false.]

A3. ESTIMATION OF DIFFERENCES BETWEEN CONDITIONS IN
COMPONENT DISTRIBUTIONS

All the self-terminating search models I know of
that have been advanced in published articles include some-
thing close to our assumption that the component Fj—
distributions that are mixed to produce the G-distributions
do not change as the number of components change. (The
presence of information in more remote positions in a buf-
fer, e.g., 1s assumed to have no effect on the time to find
a stimulus that is at any particular higher position.)
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Indeed, the explanatqry force of such models lies in their
ablility to account for effects in terms of changes in the
distribution of the number of component operations, rather

fthan changes in the durations of the components themselves.

Given failure of the model, however, one direc-
tion to pursue while still retaining the self-terminating

feature 1s to consider relaxing the assumption of invariant

Fj's. How much change in the Fj's would be needed?

The size of the violation of the short-RT prop-
erty can provide a lower bound on changes required in the
Fj's. An an example, let us consider the model for the
character-classification experiment in which the items
searched are the members of the positive set. How much
change 1in Fl as a function of s is needed to account for
the violations of the short-RT property shown in Fig. 11°?
Let {F.(s)} be the changing component distributions. For

s = 1,2, and 4 we have

Gl = Fl(l)
2G2 = Fl(2) + F2(2) > Fl(2)
MGM = Fl(ﬂ) + F2(4) + F3(4) + Fq(u) > Fl(u).

- The multiplied G-distributions thus provide upper bounds

on the altered Fl—distribution, which in turn provide lower

bounds on the amount of change in Fl:

G, - 2G2 < Fl(l) - F1(2)

1
Gy - MGM < Fl(l) - Fl(M).

(1)

(15)
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It can be seen from Fig. 11 that the change
required in Fl 1s large enough to rob the search model of
much of 1ts explanatory power. In evaluating the size of
the change required it is helpful to express it in terms
of the means, ul(l), ul(2), ‘and ul(n) of Fl(l), Fl(2), and
Fl(4), respectively. To do this we shall assume that the
increase in the low-order quantiles of Fl(s), associated
“with—an—increase—in—s; is not—accompanied by a decrease—tmr—
ﬁhe dispersion of Fl(s). Dispersion is here indexed by
Hy(s) - £y,
of Fl(s) and its a-quantile, tl;a§§), for any low-order

a(s)’ or the difference between the mean, ul(s),

quantile. This assumption implies that for small a,

uy(s) - ul(l) 2 tl’a(S) - ti;a(l), (s=2,3,...). (16)

Now, from Eq. 14,

(D) = 6T
gt
NOBE-RIR (17)
Combining Egs. 16 and 17 we have
up(2) = u (1) 2 651 (8 - 67M(w)
w () = u (D) 2 6P - 67N, (18)
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Thus the required effects of s on ul(s) are

bounded below by differences among the adjusted quantiles.
The relevant adjusted quantiles, for o
shown in the right-hand panel of Fig. 11.
values in msec shown in Table 2, which shows that even a
lower bound on the required increase in ul(s) represents a
large percentage of the increase in mean RT that is to be

explained.

.16, are those
They imply the

Table 2
s=1 to s=2 s=1 to s=4
Lower bound on
increase in ul(s) 15.0 he.7
Observed increase
in mean of GS 48.5 110.4
Percentage 30.3% 42,39

For the numeral-key choice reaction experiment
discussed in the text, a similar argument can be made, but
in this case we must consider required changes produced by
increasing the number of alternative S-R pairs in the equal-

probability mixture of F

and F2, rather than in F

Corresponding to Eq. 14 we have

]
"

v

2G4

hag

v

[F{(2)+F,(2)1/2
[F (B)+F,(4)1/2
[F,(8)+F,(8)1/2.

1

alone.

(19)
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Again, Figs. 5-8 show the change required in the component
distributions to be large.

If we let pt(n) = [ul(n)+u2(n)]/2, we have, cor-
responding to Eq. 18,

~1lra -1
wt(d) - ut(@) 2 67 (3) - 657 (a)
-1lca -1
wF(8) - ut(2) 2 657 () - G5 (0)
With o = .20 the adjusted quantiles were determined for

each of the four subjects, and averaged, with the results
shown in msec in Tables 3 and 4.

Table 3
n=2 n=U n=8
Mean Adjusted Quantile 310.5 347.8 407.8
Mean Reaction Time 354.9 43,3 519.7
Table U4

n=2 to»n=u n=2 to n=8

Lower bound on
increase in ut(n) 37.3 97.3

Observed increase
in mean Gn 88.4 164.8

Percentage 42.2% ’ 59.0%

(20)
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Again, these lower bounds on the required increases in
component means indicate much more than a second-order
adjustment.

A4, TWO SELF-TERMINATING SEARCHES IN SERIES

One way to explain the failure of the self-
terminating search model to account for the effects of num-
ber (n) of alternative S-R pairs in the 1-1 choice-reaction
experiment, without giving up the idea of self-terminating
search altogether, is to argue that n influences the dura-
tion of at least one stage of processing in addition to a
self-terminating search stage. The notion that n influ-
ences more than one processing stage is an old one, sup-
ported by evidence from the subtraction method (see, e.g.,
Jastrow, 1890; p. 35). (Such influences would produce

changes in the component distributions, such as F from

13
one n-value to another, as discussed in Sec. A3.) More
recently (Sternberg, 1969, Sec. 5) an application of the
additive-~factor method to a choice-reaction experiment in

which the stimuli were numerals led to the same conclusion.

Theios (1973) specifically excludes a two-stage
explanation for the effects of n when the stimuli are num-
bers or letters. But if we nonetheless consider this pos-
sibility it would be in the spirit of his approach to
experiments with nonalphanumeric stimuli to develop a model
in which the two processes each involved self-terminating
search, the first to identify the stimulus among the n pos-
sible stimull, and the second to specify the response among
the n possible responses. Exactly what such a model pre-
dicts for the relations among the Gn-distributions depends
on the correlation assumed between the ordering of stimulus
identities in the stimulus buffer, and the ordering of S-R
palrs in the S-R palr buffer. Since buffer position in
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both cases is assumed to depend in a similar way on the
same aspects of the trial sequence (recency and frequency)
the correlation will be positive for any specific realiza-
tion of the model. If the correlation is perfect, then the
expected bounds are the same as for a one-stage self-
fterminating search. If the two orderings are independent
(zero correlation) and the search rates in the two buffers
are equal (worst case) then the multiplying constants in
Eg. 7 must be squared:

(B)%e_(t) 2 a_(t), (all t). (21)

Inspection of Figs. 5-8 shows that this bound also fails.
(Only if the correlation of orderings is negative will the
minimum population RT increase with n.)

A5. INFLUENCE OF A SPEED-ACCURACY TRADE-OFF ON RT
COMPONENTS

As conditions (such as the number, n, of S-R
alternatives) are changed, both RT distributions and error:
rates are affected, in general. If we assume, as in the class
- of models under consideration, that the only processing
stage influenced by n is the search process, then both
effects are assoclated with this process. Note, however,
that just as other stages make contributions to RT that are
independent of n, so they might contribute to the error
rate.

Suppose that for each of the component tests that
make up the self-terminating search there is a speed- ‘
accuracy trade-off such that if B = Pr{correct test outcome}
then Fj(t) =,Fj(t;8). Tests of the model like those we
have outlined depend on B being constant from condition to
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condition. Without an accepted model of error production,
of course, we cannot decide from the error data whether B
is constant; we have been assuming, implicitly, that any
effects of n on B that do occur have relatively small
effects on Fj' On the other hand, if a constant value of

B led to an unacceptably high error rate at large values of
n, and B could be adjusted by the subject, larger n might
be associated with higher B, and the corresponding changes
in Fj could produce violations of the short-RT property
(but not the long-RT property). It seems unlikely to me
that the large changes required in the Fj could be produced
by any plausible error model for the experiments we have
been considering (see Section A3), but it is nonetheless
instructive to consider the consequences of one such model
(proposed by J.-C. Falmagne, personal communication).

Suppose that all errors during the search process
arise from "false alarms"--i.e., matches with the contents
of registers that are tested earlier than the register con-
faining the relevant stimulus representation. Then B can
be defined as the probability of a correct nonmatch. Sup-
pose further that all errors that occur arise in the search
process and that none arise in other stages. Then for the
probability Pn(c) of a correct response in the equal-
probability n-alternative condition we have

1-g"

— (22)

_ 1
Pn(c) T n

For the choice-reaction data shown in Figs. 4-8, the mean
values of Pn(o) were .984, .987, and .964 for n = 2, 4, and
8, respectively. Solving Eq. 22 for each of these n-values
we obtain, for the required values of Bn, §2 = .970,
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ég = ,990, and §8 = ,990. Hence, although the estimated B
increases fromn = 2 to n = 4, there is no increase in B
required from n = 4 ton = 8. Yet the RT data violate the
model in both of these comparisons. If we relaxed the
assumption that no errors arise from other stages of pro-
cessing, then we would find that @u - §2 1s smaller than
above, and that 88 < 84’ an inequality in the wrong direc-
tion to account for the short-RT violations.

A6. TESTS OF THE SELF-TERMINATING SEARCH MODEL APPLIED TO
CONTEXT-RECALL DATA FROM THREE EXPERIMENTS

Another memory-retrieval paradigm for which a
self-terminating search model has been advanced 1s that of
the "context-recall", or "successor-naming" experiment
(Sternberg, 1967a; 1969a, Sec 12-14). Here the subject
first memorizes an ordered list. In the most typical pro-
cedure any item in the list except the last can then be
presented as a test item, and the correct response is to
vocalize the name of the item that'follows the test item in

the list. On each trial, a new list is presented.

The model that has been proposed for performance
in this task incorporates a self-terminating ordered search
for the test item, through the items in the list. But here,
the ordered list does not naturally correspond to the buf-
fer with ordered registers that has been considered else-
where in this paper. Rather than consistently starting
 with the first item in the 1list, the search may start at a
random position, and then, if necessary, recycle to the
first item again. Because of the possibility that search
does not consistently start at the first item, two features
that have been considered as possibilities for the process
in the context-recall paradigm would, in effect, violate
the "packing" assumption discussed in Secs. 2 and Al.1l.
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Both are relevant on those trials on which the search
recycles. First, the test item may be compared to the last
item in the 1list, just as it 1s compared to the other items,
even though the last item 1s never tested. And second, the
time between comparisons of the test item to the last and
first items may be greater than the time between other
pairs of successive comparisons, because of a time incre-
ment contributed by the recycling operation. Translated
into terms of the model described in the text, these fea-
tures would mean that, on any trial on which search did not
begin with the first item, one (or more) register in the
buffer might be effectlively empty while less accessible
registers contalned relevant items.

Whether a self-terminating search with these fea-
tures could produce data that violated the distributional
inequalities would depend on the distribution of points in
the list at which the search began, and on how this
starting-polnt distribution changed between conditions.
(That such violations might occur underlines the fact that
not all possible self-terminating serlal processes are
covered by the tests discussed in the present paper.)

If an experiment were performed in which the pos-
tulated search could be guaranteed to start uniformly with
the first item, the two features should not, of course,
prevent the distributional inequalities from being satis-
fied. But such an experiment has not yet been done.

Nonetheless, data from three experiments on con-
text recall were examined for the short-RT property. In
Exp. A (Sternberg, 1967a; 1969a, Exp. 6) the list was pre-
sented once before test-item presentation. In Exp. B (one
of the three conditions in Sternberg, 1969a, Exp. 7; serial-

position functions provided in Sternberg, 1969c) the list
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was presented three times before test-item presentation.
Increasing the number of list presentations has been shown
to increase the slopes of the serial-position functions,
indicating a higher probability of starting the postulated
search at the beginning of the list. This, in turn, should
reduce the importance of both features mentioned above.
Experiments A and B used lists ranging in length from three
to seven items, with the last item never tested, so that
the number of tested list items ranged from two to six.

In Exp. C (an unpublished pilot study involving
only two subjects) the paradigm was modified so that the
last item could be tested, with the correct response
defined to be the name of the first item. In this "circu-
lar list" design, list length, now equal to the number of
~tested list items, ranged from two to six items. . Since all
items could be tested, the first of the two features of the
more usual paradigm that might produce violations of the
short-RT property was absenté Mean adjusted quantiles from

the three experiments, G;l(ﬁTﬂ, where n = number of tested
items, are shown in msec in Table 5. .

Table 5
 Number of Tested Items Slope
Experiment 2 3 it 5 6 95% Interval (3sn<6)
A (6 3s) 583 632 660 700 687 4] +20.5°
B (6 Ss) 542 595 633 612 633 43 + 9.3

C (2 3s) 500 615 601 595 643 41 + 7.8
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_The _short-RT property is violated in all three

omitted. But considering the large rate of increase of
mean RT with n in these experiments (about 125 msec/item) and
the large standard errors, and assuming that comparisons
across procedures and quantiles are meaningful, the model
does not appear to fail as badly here as in some of the
other cases we have considered. Furthermore, if the extent
of the failure for n 2 3 is compared for the three experi-
ments (which can be done by comparing the tabulated slopes
of least-squares lines fitted to mean adjusted quantiles
versus n, for 3<n<6) it can be seen that in a condition
where the starting point of the postulated process is more
likely to be at the beginning of the list, and in a condi-
tion where all items might be tested, the violation is less
severe. This finding tends to confirm the ideas that in
the usual paradigm the last item may be searched even
though it 1s not tested, and that extra time is taken to
recycle from the end to the beginning of the 1list during
the search.

As for many of the questions considered in this
_baper, more suitable experiments are needed before we can
properly interpret these violations of the short—RT.prop-

erty. They may indicate a self-terminating search with the
added features mentioned above, or may indicate that an
altogether different model is needed for contexfT-recall performance.

AT7. HOW WELL SUPPORTED BY HIS OWN DATA IS THEIOS' MODEL OF
CHARACTER CLASSIFICATION?

The tests of a model of self-terminating search
through a series of S-R pairs that have been applied to
character-classification data in Sections 7 and A2 were

applied to data not collected under exactly the same
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conditions as those of Theilos and his collaborators (Theios
et al. 1973, called "T1" below; Theios, 1973, Sec. F,
called "T2" below). This may be particularly important for
Tl where the paradigm differed, in a way that 1s perhaps
fundamental, from earlier "item-recognition" or "character-
classification" experiments (e.g., Sternberg, 1966) using

a fixed-set procedure: in the earlier experiments and in
the classification experiment considered in Sections 6, 7,
42.1 anda A3, as well as in T2, the positive set is smaller
than. the negafive, and their union is of fixed size; in Tl

positive and negative sets are of equal size.

Are procedural differences responsible for the
success claimed for the Theios et al. model in Tl and T2,
or are tests that are restricted to mean RTs too insensi-
tive to reveal actual failures? Let us consider how well
- the variable-size buffer model fits the mean RT data

reported in Tl and T2.

In T2 three aspects of the data are emphasized:
(1) the effect of positive-set size on RT, (2) the effect
of stimulus presentation probability on RT, and (3) the
efféect of prior stimulus sequence on RT. Consider these
effects in turn.

(1) Set-size Effect. In Tl the model fits well.
However, in T2 Thelos emphasizes the statistical signifi-

cance of the deviation of the observed RT versus set size
function (which is concave downward) from the best-fitting

linear function. A fortiori the observed function must
differ significantly from the function generated by the
variable-size buffer model that best fits these data, since
the iatter function is concave upward.

(2) Stimulus-probability Effect. In T2 the model
fits reasonably well. But in Tl, data and best-fitting
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model deviate systematically. Relative to the data, the
fitted probabllity effects are too large for the larger
positive sets and too small for the smaller. This syste-
matic discrepancy is shown in Table 6, whose entries were
obtained from Table 2 in T1. The observed effects are
based on data from Exps. 1 and 2 in Tl. The fitted effects
are based on simulations of the variable-size buffer model.
For each size, s, of positive set the tabulated "effect" is
defined by the difference between mean RTs for the smallest
and largest presentation probabilities used with that s-
value.

Table 6
Observed versus Fitted Effects (in ﬁsec) of

Stimulus Probablility from Theids et al. (1973)

Size of Positive Set 2 3 I 5

Probability Range .15-.35 .05-.30 .05-.20 .05-.20

Positive-set Stimuli

Observed Effect 45 82 63 52
Fitted Effect 26 71 71 90
Difference +19 +11 - 8 -38
Percentage of Observed +429 +13% -13% -73%

Negative-set Stimuli

Observed Effect 31 88 37 47
Fitted Effect 19 L7 Ly 71
Difference +12 +41 -7 -24
Percentage of Observed +39% +479 - 199 -51%
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The interaction between stimulus probability and size of
positive set 1s substantially larger in the best-fitting
model than in the data.

(3) Sequence Effect. To my knowledge, sequential

effects predicted from the best-fitting model have never
been quantitatively compared to sequential effects in the
data.

Despite these discrepancies, it was concluded in
both Tl and T2 that the self-terminating search model
fitted well. One possible reason may be that the overall
goodness-of-fit measure is insensitive. An indication of
this insensitivity is the fact that using this measure,
Theios et al. were unable to reject any of six different
models (including pairs of models describing three concep-
fually distinct processes) fitted to the data in T1l. 1In
this connection it is useful to note the number of free
parameters used in fitting the favored model in Tl and T2.
For each size of positive set, a different buffer size was
assumed. If we take each buffer size to be a separate
parameter (possibly a debatable assumption) then in T1
there were nine free parameters (24 data points fitted) and
in T2 there were eight free parameters (ten data points
fitted).

Finally, a comment should be made on two appar-
ently arbitrary features of the favored model in Tl and T2.
First, the assumed increase in size of the short-term
memory buffer to conform to the size of the positive set is
sald (T1l, p. 332) to result from the subject's attempt to
"perform the task as instructed". Otherwise the subject
could keep the buffer at its minimum size and perform more
efficiently with the larger set sizes. We must thus assume
that although the subject is told to perform as fast as he
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can, he chooses not to do so. The second feature is that
the time to access the long-term memory (represented by the
last position in the memory buffer) is assumed to decrease
as the size of positive set decreases. If this latter
assumption is not made, the variable-size buffer model

fails at a gross level; if the varied buffer-size feature

is dropped then we have already seen (Section A2.1) that for
experiments with a fixed stimulus ensemble the self-
terminating search model fails seriously; this failure also
applies to the data reported in T2.

A8. BOUNDS ON RT-DISTRIBUTIONS FOR INDIVIDUAL ITEMS IN THE
TWO-STATE CASE

Models in which the number of distinct states is
limited to two have been of particular interest to students
of choice behavior (e.g., Falmagne, 1965; Falmagne & Theios,
1969; Theios & Smith, 1972; Falmagne et al., 1973).

A8.1 Two States Plus Packing Assumption

Suppose we introduce the packing assumption as
well as the restriction to two distinct states. Then, for
a fixed total number of items, the number of items occupy-
ing each of the two states at any time must remain fixed
across trials and conditions, while the identities of the

items, and the matrix of state-occupation probabilities can
vary. Furthermore, for any pair of conditions, a and b, we
see that by expressing mG(t) as a sum, the invariance prop-
erty (Sec. Al.2) asserts that

PGy (8) = ] 6 (), (all t), (23)
i -] i >

where Gi k(t) is the cdf for item 1 in condition k, and

L]
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i=1,2,...,m. What more can be said about the cdf's of
RTs for individual items in the two-state case?

A8.2 Two States Without Packing Assumption

More can be said even without requiring the pack-
ing assumption. First, Falmagne (1968) has observed that
the following fixed-point property must apply: If G1 a(t)

>

and G1 b(t) touch or cross at any point t = to, so that
3
Gl,a(to) = Gl,b(to) = o, then for any third condition, c,
G (t.) = a. That is, G must cross or touch the other
l,ec¥70 1l,c

cdf's at the same fixed point. (Falmagne has shown that

the same property must also hold for the density functions
gl,a’ gl,b’ and gl,c‘) If the fixed-point property was
satisfied for all items, but the invariance property (Eq.

23) was not, this would give support to a two-state model
without the packing assumption. (Note, however, that for

the fixed-point property to be tested requires that we
observe at least three conditions, and that the cdf's or
density functions from two of the conditions touch .or cross.)

An additional consequence of limiting the number
of distinct states to two is obtained if the approach of
the present paper is applied to the cdf's for individual
stimuli. Distributional bounds that depend on the mixing
probabilities can then be derived. These bounds may prove
useful for testing models in which the mixing probabilities
are specifiled as functions of experimental conditions, or
for estimating bounds on sets of unspecified mixing proba-
bilitiés where a binary-mixture model 1s postulated.

Suppose two states. Then the cdf for any partic-
ular item, i, is a binafy mixture of two distributions;
call them Fl and F2. The only differences across items and
conditions lie in the mixing probabilities. Let these proba-

bilities be ai,l = oy and ai,2 =1 - o for condition a,
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and Bi,l =Bi and 81,2 =1 - Bi for condition b. Hence, for

conditions a and b we have:

[®]
—
o
~
[{}

aiFl(t) + (1—ai)F2(t), (all t, all i), (24)
and

G, ,(£) = B,F(8) + (1-8,)F,(t), (all &, all 1), (25)

3

Assume that o

N

B (where the i subscript is suppressed).
Multiplying Eq. 24 by o~T and Eq. 25 by 87T, and noting
that (l1-a)/a 2 (1-8)/B, it follows that a_lGa(t) 2 B‘leb(t).
Similarly, multiplying Eq. 24 by (1-a)”F and Eq. 25 by
(1-8)"1 it follows that (l-oc)_lGa(t) < (1-8)7'a, (£). Com-
bining and rearranging we have the bounds:

o, l-o.,
i i - .
T Gi,b(t> < Gi,a(t> < I:EI Gi,b(t>’ (all t, all 1). (26)

i

(In all of the above, we have been assuming that
a component distribution depends only on the state of an
item, and not on the item itself. It should be pointed out

that this assumption is not required for statements like

Eq. 26 (above), and Egs. 29-30 (below), which pertain to
cdf's for the same item.) ©Note that if o and B are allowed
to take on any values in the unit interval, then any pair
of distributions (Ga,Gb) can be made to satisfy Eq. 26; the
bounds are of interest only for testing a binary mixture
model with specified o and B, or for specifying allowed
ranges for a and B, given an observed pair of distributions.



A28

Thus, if such a pair requires o/B8 < A and (1l-a)/(1-8) 2 B
to satisfy Eq. 27, o and B are constrained by

A(1-B) 1-B
QSW’BZE' (27)

A simple graphical method exists for estimating
or testing values of the multipliers A and B. If a P-P
probability plot (Wilk & Gnanadesikan, 1969) is made in
which Gi,a(t) is plotted as a function of Gi,b(t) (with ¢
the parameter), then the resulting curve must fall between
two lines through the origin, one of slope A and the other

of slope B.

A8.3 Two Items Plus Packing Assumption
For this situation to be nontrivial there are two
distinct states. Equation 23 can be written

(6] 5 (6)-8) ((8)] = =[C, _(£)=G,  (¢)] (28)

which says that a change in condition must produce equal
and opposite changes in the c¢df's for the two items.

Furthermore, on any trial in this situation, one
of the two items is in each of the two states, so that for
The two conditions, a and b, a) = 1~ ay, = o and Bl
= 1 - 82 = B. Equation 26 then becomes

30 p <@ < i%g (29)

and



A29

o
<z Gz,b. (30)

The bounds above (Egs. 26, 29, 30) apply to the same item
in different conditions. Arguments like those above also
give bounds for the palr of distributions obtained from
different items within the same condition:

2.8 € 520y . (95.5) (31)

[ep]
A
(@]
IA

and

1-8

Im
(]
A

G

.

2.0 € S5 Oy s (85.5) (32)

If conditions 29 and 30 are satisfied for values
of a and B that are regarded as reasonable, but conditions
31 and 32 are not, this could be taken as evidence against
the assumption that the component distributions Fi and F2
are independent of i, since conditions 29 and 30 do not
depend on this assumption, whereas conditions 31 and 32 do.
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