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The Meaning of Additive Reaction-Time
Effects: Tests of Three Alternatives

Seth Roberts and Saul Sternberg

26.1 INTRODUCTION

At Attention and Performance II, Sternberg (1969) introduced the additive-
factor method, for interpreting reaction-time (RT) data from factorial experi-
ments. In that method, additivity of the effects of experimental treatments on
mean RT is taken to suggest that the underlying mechanism can be divided into
independently changeable, serially arranged operations (stage model). In this
chapter we consider two other explanations of additive means: a model
with independently changeable alternate pathways and the McClelland-Ashby
cascade model. In all three models, experimental factors that influence different
operations can have additive effects. To choose among these models we
develop several tests, including comparisons of entire RT distributions. Ap-
plied to the results of four diverse experiments, the tests support the stage
model and contradict the alternate-pathways and cascade models. In particular,
the results of one distributional test, based on a suggestion by Ashby and
Townsend (1980), support the stage model remarkably well.

Some of the examples of additivity in Sternberg (1969) were remarkably
precise. In a numeral-naming experiment, for example, main effects of about
50 and 100 ms were additive with a precision of about 1 ms. Since then, many
more examples of impressive additivity have been observed (Roberts 1987;
Sanders 1980, 1990; Sternberg 1971). These results were unexpected; there is
no obvious reason why behavior should be so simple. Nothing in the anatomy
or physiology of the brain would lead one to expect such simplicity, and there
is almost no precedent in other observations of behavior. Unlike the few other
well-established cases where behavior has a simple quantitative structure, such
as Stevens’s power law, or receiver operating characteristics (ROCs) that are
linear in normalized coordinates (e.g., Swets 1986), RT additivity is compara-
tively general, found in a large range of experiments, with diverse factors.
Whatever the mechanism that produces additivity, it must be widespread.

What is the mechanism? The proposal that additivity reflects stages of
processing has gained some support. Sanders (1980; 1990, especially fig. 1)
has shown how existing examples of additivity, taken together and inter-
preted in terms of processing stages, make a consistent picture. Roberts (1987)
showed that with some modification, the stages explanation of RT additivity
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also explained multiplicative effects of factors on response rate in animal experi-
ments, and that this explanation made sense in terms of other knowledge.

The proposal has also faced both specific challenges and general skepticism.
As an example of a specific challenge, Pieters (1983) questioned the use of
analysis of variance to test additivity. Other critics include Taylor (1976),
Townsend (1984), Townsend and Ashby (1983), and Wickelgren (1977). For
a summary, see Luce (1986, 481—483), who states that “many of those who
have commented on the matter very strongly question the existence of stages
at all, at least as conceived by Sternberg” (482). (Miller 1988 argues that
some of the evidence regarded as negative is unpersuasive, however.) For
examples of general skepticism see Broadbent (1984, 56—58) and Gardner
(1985, 120—124). Such skepticism may reflect the belief that stage models
are too simple; Broadbent, for example, calls them “simplistic” (55). But
additivity is simple.

Alternative Explanations of Additive Effects

Regardless of current theories and beliefs, additivity as a phenomenon is too
widespread to be ignored. Here we consider Sternberg’s (1969) explanation
together with two alternatives. The first, which produces exact additivity, is a
mechanism with alternate pathways; the response is generated by one or the
other pathway with a fixed mixing probability. The second, which produces
approximate additivity, is McClelland’s (1979) cascade model as further de-
veloped by Ashby (1982). See also Townsend and Ashby (1983, chap. 12).

Suppose that factors A and B have additive effects on mean RT. In all three
of the explanations we consider, the mechanism is modular (Shallice 1988, sec.
2.1) in the sense that it is composed of processes a and b that can be changed
independently. Additivity in an experiment with factors A and B is explained
by the mechanism together with an assumption of selective influence: factor
A influences process a but not b, whereas factor B influences process b but not
a. Hence, for purposes of the present chapter, we incorporate an assumption
of selective influence among the defining features of each model, from which
we derive properties that permit it to be tested. The models differ in the
arrangement of processes 4 and b, and in the nature of the communication
between them.! In a stage model the processes are arranged sequentially, with
one beginning when its predecessor is complete; both are required for response
initiation. In the alternate-pathways model, process a is used on some occasions
while process b is used on the remaining occasions; on no trials are they both
used. In the cascade model both processes are used on all trials, but process a
provides output continuously to process b (“partial output”) which thus oper-
ates concurrently with .2

Implications for the Additive-Factor Method

That radically different mechanisms are capable of producing additive effects
of experimental manipulations on mean RT has important implications for the

Roberts and Sternberg



613

additive-factor method. First, insofar as approximations to these mechanisms
exist, it widens the domain within which the method can be used to discover
and determine the properties of independently changeable (modular) pro-
cesses.® But second, although a finding of additivity still supports such modu-
larity, it does not support a stage model without additional evidence, contrary
to Sternberg (1969). In what follows we provide such evidence, based on tests
that distinguish among the three mechanisms.

26.2 GENERAL AND STOCHASTICALLY-INDEPENDENT STAGE
MODELS

Definition of the Models

In the stage model, processes a and b operate in sequence, possibly con-
catenated with other operations; one process begins when its predecessor is
complete (discrete transmission; see, e.g., Meyer, Yantis, Osman, and Smith
1984; Miller 1988, 1990; and Sanders 1990). For a description of three rela-
tions between processes that would produce such seriality, see Sternberg 1984.
According to the model, the stream of processes between stimulus and re-
sponse can be cut at some point, defining two processing stages, “stage a” the
processes before the cut (including process ), and “stage b” the processes after
the cut (including process b). The cut is temporal; it may or may not be spatial
(anatomical). We make two assumptions, the first of which follows from the
sequential arrangement of stages:

1. Stages: RT is the sum of stage durations: T = T, + T,.

2. Selective Influence: Factor A influences the duration of stage a, but not b;
factor B influences the duration of stage b, but not a.

In other words, factor A acts only before the cut; factor B acts only after the
cut. A third assumption strengthens the model considerably:

3. Stochastic Independence (SI): Durations T, and T, are stochastically indepen-
dent. We refer to a model with this property.as an-Slstage model, to distinguish
it from a general stage model (Gstage model) for which assumption (3) is not
made. Of course, any evidence that favors the Slstage model also supports a
fortiori the Gstage model.

Additivity of Factor Effects on Mean and Variance
Suppose each factor can have two levels, indexed by i = 1, 2 for factor A and

j =1, 2 for factor B. Given selective influence we can then write T,; for the
duration of stage 4 when factor A is at level A;, and T,; for the duration of

stage b when factor B is at level B, so that we have for the RT, T;;, at levels
A; and B,
Tij=Tu + Ty; (1)

We shall assume that increasing an index i or j corresponds to increasing the

Meaning of Additive Reaction-Time Effects
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mean RT; we refer to such a change in level as “raising the level” of the
factor. As we shall be considering the two-way interaction contrast of various
quantities in what follows, it is convenient to define it symbolically: For any
function or quantity S;;, where i = 1, 2 and j = 1, 2 we let

jr

K{S;} =S5, — 512 — 51 + 5,,. (2)
The central property of the stage model is then*
Hugh = 0. ®

To make similar statements about higher-order moments, we must know or
assume something about the stochastic dependence of stage durations. For
example, relations among the RT variances under the four conditions in a
2 x 2 experiment depend on the set of covariances y; = cov(T,, T,;). If we
invoke the SI assumption, then because this implies that all four covariances
are zero, we have variance additivity:

I{e} = 0. (@

Equation (4) characterizes the stage model under conditions more general than
stochastic independence of stage durations, however. By using the relation
o} = o} + of; + 2y,; we see that I{o7} = 2I{y;;}. Equation (4) will thus be
satisfied not only if the stage-duration covariances are all zero (required in the
Slstage model), but also if they are nonzero but constant (which also implies
I{y;;} = 0), or nonconstant but additive. The last two possibilities are implausi-
ble, however: let D, = T,, — T,, and D, = T;, — T,; be the increments
in stage duration produced by raising the respective factor levels. Richard
Schweickert pointed out to us that equation (4) (additive variances) obtains if
and only if cov(D,, D,) = 0 (uncorrelated increments). It is implausible that we
would have uncorrelated increments but correlated base durations, T,,, T;,.
This observation leaves zero covariance of stage durations as the favored
explanation of additive RT variance and renders such additivity even more
important.

The Summation Test

Further implications of the SI property are expressed informally by
FT“+T22(t) = FT12+T21(t)’ (t = O)’ (5)

which asserts the stochastic equality of the two sums: Ty, ,, = Ty; + T,, and
Ti5.21 = Ty, + T,y, where K (f) = F is the cumulative distribution function
(CDF) of the random variable X. The idea of directly comparing the two CDFs
of equation (5) to test the Slstage model in a 2 X 2 experiment was first
proposed by Ashby and Townsend (1980), who proved the equality of convo-
lutions equivalent to equation (5): Fy,, * fr,, = Fr,, * fr, , where the { f_} and
{Fr,,} are the density functions and CDFs, respectively, of the {T;;}, and
* represents convolution. To use the relation in the way they advocate,
however, requires estimating density functions (Silverman 1986) and then

Roberts and Sternberg



615

performing numerical convolution. We prefer the simpler method of approxi-
mating the convolutions that is embodied in the summation test, and that is
suggested by equation (5) and its constructive proof (see Appendix). Instead
of numerical convolution, one creates samples from T;; + T,, and T,, + T,
by simply summing RTs from each of the two pairs of conditions, and then
determines the empirical CDFs of the two sums.

Because the summation distributions T;; ,, and T,, ,, must be identical
(except for sampling error) given the Slstage model, any arbitrary property of
the distributions must be identical. Thus, one advantage over testing the
additivity of cumulants of the four component distributions (a property theo-
retically equivalent to the distributional equality) is that measures of scale and
shape of the summation distributions can be used that may be more stable,
robust, and resistant than the sample cumulants (Mosteller and Tukey 1977;
Ratcliff 1979), even if such measures are biased.

While sufficient for the summation test to work, stochastic independence of
stage durations is not necessary. This is shown by the following example, for
which we are indebted to Frank Norman: Let T,; = f,; + z and T,; = t,; — z,
and assume that t,;, t,5, t,;, f,, and z are mutually independent. Then the
summation test is satisfied, even though stage durations T,; and T,; are not
independent. Here cov(T,;, T,;) = o7, an instance of nonzero but constant
covariance that satisfies equation (4), as described above. Necessary conditions
for the summation test—which must be stronger than the Gstage model, but
weaker than the Slstage model—have yet to be discovered.’

Another sufficient condition for equation (5), noted by Frank Norman, can
be described as a translation conditiori among the distributions of the {T;;},
and does not require stochastic independence of the stage durations that
contribute to T;;. Under this_condition the distributions differ by translation
only; the distributions of the centered RTs, t;; = T;; — u;; are therefore identi-
cal:

L =F

J=F,w,=F  (=12j=12) ©6)
The translation condition is approximated by a stage mechanism in which the
durations of stages a and b display little variability from trial to trial, so that
most of the variability is contributed by stages other than those influenced by
factors A and B; an increase in factor level then only adds a constant to the
RT. (Although it differs in detail, we shall see that such a mechanism is similar
in spirit to the cascade model, in which the units influenced by experimental
factors are not inherently stochastic, so that the required variability is grafted
onto a deterministic mechanism.) Given the translation condition, the summa-
tion test would not be particularly helpful, since it would require only means
additivity (equation 3) in addition. For the test to be interesting, therefore, the
RT distributions for different conditions should differ by more than just their
means. In sections 26.7 and 26.8 we show this to be dramatically true for the
data sets we consider.

Meaning of Additive Reaction-Time Effects
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26.3 THE ALTERNATE-PATHWAYS (AP) MODEL
Definition of the Model

In the second model we consider that generates additive RT effects, the task is
accomplished by process a on a proportion p of the trials, and by process b on
the remaining trials. We call the processes “pathways” to suggest the possibil-
ity of distinct anatomical substrates. We make three assumptions:

1. Alternate Pathways: With probability p the response is produced by pathway
a; with probability 1 — p by pathway b.

2. Selective Influence: Factor A influences the duration of pathway a, but not b;
factor B influences the duration of pathway b, but not a.

3. Fixed Probability: Neither A nor B influences the pathway probabilities, p and
1—p

Generality: Embedded AP Structure Suppose the AP mechanism is pre-
ceded and followed by one or more other processes (stages ¢ and d). The
resulting mechanism can be regarded as an AP model with one pathway
containing stages ¢, 4, and d, and the other containing ¢, b, and d. For all
properties of the AP model to apply, however, we must assume that factors
A and B do not influence stages ¢ or d.

Generality: Multiple Pathways Suppose multiple alternate pathways, with
one subset {a,} of pathways influenced by factor A, a second subset {b,} by factor
B, and a third subset {c,,} influenced by neither A nor B. This is equivalent to
a two-pathway model with pathway a a probability mixture of the {4,} and
pathway b a probability mixture of the {b,} and the {c,}. The important
constraint is that no subset of pathways be influenced by both A and B. Thus,
unlike the Slstage model, in which a third factor C that interacts with both A
and B cannot be permitted to vary freely without inducing a spurious correla-
tion between stage durations, such free variation in an AP model does not alter
any of its properties; different levels of C can be regarded as corresponding to
different members of pathway a and pathway b subsets.

Plausibility The AP model deserves serious consideration for several rea-
sons. The alternate processing pathways of the model may correspond to
different physical paths: the brain contains multiple anatomical pathways along
the route from input to output. An argument from anatomy that has been used
to support parallel and connectionist processes (Rumelhart and McClelland
1986) thus also lends plausibility to the AP model.® Different paths may
correspond to different subsets of stimuli: In Atkinson and Juola’s (1974)
theory of memory recognition, for example, decisions about some items are
based on familiarity while decisions about others require an extended search.
According to some models of choice that have been successfully applied to
data, RTs are a mixture of responses from different pathways, determined by
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fluctuations in the subject’s state: In the fast-guess model of Ollman (1966) and
Yellott (1971), for example, some responses are stimulus-controlled, others
guesses, and factors that influence the former do not influence the guessing
probability, consistent with assumption 3. In an RT experiment with pigeons,
Blough (1978; see also Luce 1986, sec. 6.3) found that on some trials the
response was not controlled by the wavelength of the stimulus while on
the others it was; again consistent with assumption 3, the proportion was
unaffected by wavelength. The naming of printed words is believed to be
accomplished by more than one route, not all requiring graphemic-phonemic
conversion (Coltheart 1985). Assumption 3 would be plausible in this context
if, for example, the choice of pathway were governed by a fixed attribute of
the word, unknown to the experimenter, and independent of the factors
manipulated explicitly. For a review of multiple-pathway models of human
information processing, methods for their analysis, and supporting data, see
Yantis, Meyer, and Smith (1991). They consider experiments in which the
manipulations are believed to alter the pathway probabilities but have no
effect on the pathways, complementary assumptions to those of the AP model.

The Central Property and the Mixture Test

Let G;(t) be the CDF of the duration T,; when factor A is at level i, and let H;(f)
be the CDF of the duration T,; when factor B is at level j. With this notation
the observed reaction time T;; is a mixture of T,; and T,; with mixing probabil-
ity p; the CDF is the weighted sum,

E;() = pGi(H + (1 — p)H(¥), (t=0). (7)
This leads to the central property of the AP model
HE(} =0,  (t>0), - ®)

which is equivalent to
3[F11(8) + Eyp (0] = 3[Fio (1) + Fyy (9], (t=0); 9)

we multiply by 4 so that each side of equation (9) is a CDF. The power of
equations (8) and (9) resides in their independence of the pathway probability,
p. Because each side of equation (9) is the distribution of an equal-probability
mixture of two populations of RTs, it can also be written

Foixt,1. 129 = Faixr 1,9 ®, - (£20), (10)

where mix(X, Y) denotes such a mixture of random variables X and Y; this
equation can be contrasted with equation (5) in which each side is the distribu-
tion of the sum of the same RTs. Corresponding to the summation test for the
stage model we thus have a mixture test for the AP model. If sample sizes are
equal in paired conditions, the model asserts that pooling the RTs from
conditions 11 and 22, and from conditions 12 and 21, should produce two
samples with the same population distribution. If sample sizes are unequal,
then comparison of the means of pairs of corresponding empirical CDFs may
be preferable.

Meaning of Additive Reaction-Time Effects
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Two sets of implications of equation (8) lead to tests of special interest: one
concerned with means and variances, useful where distributions are not avail-
able, the other concerned with relations among the distributions.

Additivity of Factor Effects on the Mean and Other Raw Moments

Unlike the stage model, the AP model constrains the relations among the
means and higher-order moments across the conditions of a factorial experi-
ment without added assumptions comparable to stochastic independence of
stage durations. Because estimates of moments of increasing order are increas-
ingly unstable, we focus on first and second moments. From equation (8) it is
easy to show that for the raw moments of order r, {y;;},

Ku,} =0, (r > 1). (11)

When r = 1 we have additivity of means, I{y;;} = 0, the property we are
trying to explain. When r = 2 we have additivity of the second raw moments
(not the variances):

Kus} = 0. (12)
Because u5 = 62 + u?, equation (12) becomes
Ko} = —{uf} (13)

It is convenient to introduce two notational conventions for the means in
2 x 2 experiments. First, let a dot subscript represent averaging over levels of
the corresponding index; for example, u.; = 3(u;; + p,,). Second, let a d
subscript represent a difference between levels of the corresponding index,
subtracting lower from higher; for example, u;; = u,; — p,,; we also define
Haa = Hpp — Hyq = M4, + .. We choose indices for factor levels such that
the main effects of both factors are nonnegative: p,, = fi,, — p;. > 0, and
H.g= W, — i,y = 0. In what follows we assume that both main effects are
nonzero. Given means additivity,

Kud} = 2p4.00.0 (14)
from equation (13) we then have
I{U;%‘} = —2p4.lq- (15)

Because p,, and p.,4 are both positive, the right-hand side of equation (15) is
negative. The AP model thus requires that rather than being additive, as in
equation (4), the effects of the two factors on the variance interact, with 2, 4.,
being the magnitude of the (negative) interaction contrast. If the main effects
of A and B on the variance are in the same direction as their effects on the
mean (often but not always the case; compare na = 2 and na = 8 in tables 26.2
and 26.3), then the interaction is negative (underadditivity).

The contrast between equations (4) and (15) implies that no set of distribu-
tions {F;;} can satisfy both the mixture and summation tests: For any distribu-
tions that satisfy the summation test, variance effects are additive (equation 4);

Roberts and Sternberg
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for any distributions that satisfy the mixture test, variance effects interact
(equation 15). Furthermore, equation (15) indicates how the summation test
should fail, given the AP model: Because a2, + 03, < 6%, + ¢2,, Fr 1, will
be flatter than Fy ;. , and, to the extent that the two distributions are
symmetric, the CDFs will cross close to their medians (F & 0.5). It is also of
interest how the mixture test will fail, given a stage model. We need assume
only variance additivity (equation 4), not full stochastic independence, to show
that

a-rznix{T“,Tn} - o-rznix{le,Tzl} =4yl (16)
Thus Fixr,, 1,,3 Will be steeper than Frix{r,,,T5,); again, to the extent that
the two distributions are symmetric, the CDFs will cross close to F = 0.5. The
pattern expected in failures of the mixture test is further discussed below.

The expected failure of variance additivity produced by the AP model can
be dramatic, sometimes a crossover interaction, in which the direction of the effect
of one factor (not merely its magnitude) depends on the level of the other.
Thus, let an “i-crossover” ina 2 X 2 experiment be an interaction in which the
sign of the i-effect on a statistic 5;; depends on the j level, and let a “j-
crossover” be defined similarly. It is easy to show that we have an i-crossover
if and only if |I{S,;}| > 2S,. and a j-crossover if and only if [I{S;;}| > 25.,. For
example, in experiment 2, na = 8, the mean predicted variance interaction
contrast (—2p,.p.4) is — 10,824 & 1,894 ms?; this value can be compared to
the main effects on RT variance (438 + 166 ms? for factor A and 841 + 297
ms? for factor B), after doubling them.” Both crossover conditions are satisfied;
if the model is correct the variances must therefore display both kinds of
crossover interaction.

The AP Model as a Special Stage Mechanism

That the AP model is a special case of the Gstage model (but different from
the Slstage model) can be seen as follows: Suppose a stage model with stages
a and b and corresponding factors A and B. Now suppose there is a third factor,
C, that influences both stages so as to interact powerfully with factors A and
B in a special way: At level C; of C the effect of A on a is nullified; at level C,
of C the effect of B on b is nullified. If data are pooled over levels of C, we
have an AP model in which the pathway on a trial is determined by C level.
(The means additivity of the AP model thus follows from its being a stage
model; the failure of variance additivity shows that this special stage model
cannot be an Slstage model.) The AP and Slstage models are thus at the ends
of a continuum of joint influence: Let an “A-influenced process” be a process
whose duration depends on A. In the AP model there are no trials on which
A-influenced and B-influenced processes both operate; in the Slstage model
A-influenced and B-influenced processes operate on all trials. (Roberts, chap.
25, 600—601, describes two ways of distinguishing these possibilities in other
situations.)

Meaning of Additive Reaction-Time Effects
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Tails of the RT Distribution and Mixture-Test Failures

It is helpful to consider how the mixture test might be expected to fail, given
a stage model; we do so by supposing processes with minimum and maximum
durations.® It is plausible for most psychological processes that their minimum
durations are greater than zero: even the fastest output cannot be produced in
arbitrarily short time. (Cf. Donders’s ([1868] 1969) application of the subtrac-
tion method to the minimum RT.) With some important exceptions it also
seems plausible that a change in factor level that increases the mean duration
of a process also increases its minimum duration. (We shall see that neither of
these properties applies to the cascade model, however.) In an Slstage model
any change in factor A that increases min(T,) will increase the minimum RT,
min(T) to the same extent. (A corollary is that factors will have additive effects
on the minimum, such that I{min(T;;)} = 0, mirroring the additivity of u;;.)
Finally, this property will be robust in the face of all except extreme forms of
stochastic dependence (such as that embodied in the AP model), so we can
expect it in many cases of the Gstage model. For the AP model, however, the
property need not obtain, even though additivity in the mean does: Suppose
that the shortest times are produced by pathway 4. An increase in the level of
factor B will then not change the minimum RT. In this respect the AP model
acts like a (self-terminating) pair of parallel processes, in which the one with
the shortest duration is reflected in the RT. In short, for a Gstage model it is
possible (but not necessary) that increasing the level of either of two factors
will increase the minimum RT; for an AP model both levels must be increased.
A similar contrast between the models holds for the relation between maxi-
mum process durations and the maximum RT.

These intuitions about extreme RTs are captured by two corollaries of
equation (8) that may focus analyses on aspects of the AP and stage models
that are especially useful in model discrimination. The first is interesting in
relation to short RTs:

F, () < F,) + K, (M), (t=0). (17)

For small t, where F,,(f) is small, equation (17) captures the intuition that,
depending on which pathway contains the shortest times in condition 11,
either F,, or F,; will contain RTs that are as short as the shortest in F;;. In
contrast, increasing the level of either factor alone in a stage model can
increase min(T); the short times in condition 11 would then be too abundant
for equation (17) to be satisfied, and the left side of equation (9) would exceed
the right, for small t. The second corollary is interesting in relation to long
RTs. Let I:'U(t) =1—F;iH= Pr{T;; > t}. Then,

o) <Fo(0+ By, (20 (18)
For large #, where F, ; (f) is small, equation (18) captures the intuition that either
F,, or F,, will contain RTs as long as the longest in F,,. In contrast, decreasing
the level of either factor alone in a stage model can reduce max(T); the long

times in condition 22 would then be too abundant for equation (18) to be
satisfied, and the right side of equation (9) would exceed the left, for large .

Roberts and Sternberg
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This pattern of mixture test failures expected for some stage models cor-
responds to what we expect from the behavior of the variance of the Slstage
model, discussed above.

26.4 THE MCCLELLAND-ASHBY CASCADE MODEL
Definition of the Model

The third model we consider, the cascade model, was introduced by McClelland
(1979) and further developed by Ashby (1982). Even assuming selective influence
of factors on processes, it does not invariably generate additive RT effects, but
with some parameter settings additivity is approximated well. This model is of
interest partly because it is a precursor of more complex connectionist models,
which often incorporate some of its features (Rumelhart and McClelland 1982).

The model contains a set of k = 1, 2, ..., n processing units, each with an input
and an output. The output from unit k is the input to unit k + 1. The amount of
its work accomplished by unit k by a given time f after stimulus onset is measured
by its level of output activation a,(f) at that time; this grows continuously and
at a rate proportional to the instantaneous difference between its current
input and output levels (a linear integrator), divided by its time constant, 7.
Thus, in response to a step-function input at time + = 0 the output grows
exponentially to an asymptote, a: a,(f) = a(1 — e”"*). Stimulus onset pro-
vides such a step-function input to unit 1. The response mechanism is triggered
when the output of unit # exceeds an activation criterion. RTs vary from trial
to trial because of variability in the time added by the response mechanism,
and because of noise in the final output activation level or, equivalently, in the
criterion; the units themselves function deterministically.®

In the model’s initial formulation, experimental manipulations could in-
fluence the asymptotic activation level as well as the time constants. Because
of this feature, as well as the choice of noise distribution, there could be too
many trials on which the criterion exceeded the asymptotic activation level,
precluding a response. To eliminate this problem, Ashby (1982) permitted
experimental factors to influence only the time constants, and adjusted the
noise distribution slightly, truncating it at + 2.50, so that the criterion never
exceeds the asymptotic activation level. With these adjustments and a few
others Ashby derived the RT CDF that we have used in our explorations.

The cascade model is much more specific than the stage and AP models; for
example, it does not share their virtue of being distribution free. It is not
obvious how best to characterize its many features, nor is it yet clear which
features are essential for its interesting properties. For example, it is not known
how important are the particular shape, location, and spread of the criterion
distribution, nor the particular law for the growth of activation. On the other
hand, not all such laws are consistent with the spirit of the model, since some
could transmute it into a stage model. One consequence of our current
ignorance about which features are critical is that evidence against the model,
which may result from an incorrect choice of particular features or parameter
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values, is relatively less important than evidence for it, which is unlikely to
result from a combination of such incorrect choices. By testing this particular
model we hope to learn one way to approach the more interesting goal of
testing a larger class of models of which it is a member. One possible descrip-
tion of the model is as follows; the first four assumptions refer to quantitative
features that must be specified precisely.

1. Processes in Cascade: Processing is gradual, with the current results of one
process immediately available to the next.

2. Unit Time Course: A linear integrator relates a,(f) to a,_,(f), as described
above.

3. Response Actuation: A response is triggered when a,(t) reaches criterion.

4. Noise Distribution: Here is specified the criterion (or activation) noise distri-
bution and the assumption that the mechanism is affected by just one sample
from this distribution per trial.

5. Selective Influence: Factor A influences only process a; factor B influences only
process b.

6. Influence Mechanism: A factor influences a process by altering its time
constant, t,.

The processing units in the cascade model are ordered structurally by their
input-output relations. Only in some senses are they ordered temporally. For
example, a given level of activation must be achieved by unit k before it can
be achieved by unit k + 1, but activation begins to rise at the output of the
final unit as soon as the stimulus is applied, and responses can be.-triggered
before any process is close to its asymptote. Furthermore, the output activa-
tion function 4,(f) is independent of unit order, evident in equation (19). In
addition to its relevance to connectionist models, the cascade model is interest-
ing because, as we shall see, it is capable of producing approximately additive
factor effects on both mean and variance, like the SIstage model, and because
it embodies an interesting and plausible idea—that information is passed
continuously from one process to the next. The idea of “partial output,” of
which this is one realization, has been tested (with mixed conclusions) by
devising special experimental procedures or using measures other than RT;
see, for example, Osman, Bashore, Coles, Donchin, and Meyer (1992), Meyer,
Irwin, Osman, and Kounios (1988), Meyer, Osman, Irwin, and Yantis (1988),
Miller (1988), Miller and Hackley (in press), and Schweickert (1989). Testing
of the cascade model is an additional approach.

The Processing-Time Distribution

Activation level at the output of unit n, as a proportion of the asymptotic
value, behaves according to the cascade equation:

EG=1—13 [1‘[ Pm }—m, 0<t<oaon>2), (19)
k=1

m=1 Pm — Pk
m#k
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where p, = 7! is the rate constant of unit k. As t grows from 0 to oo, E,(f)
grows from O to 1. Time, f, is in arbitrary units; to connect the model to data
requires either using statistics in which the time unit is eliminated, or spec-
ifying £, ms, the duration of a time unit, and multiplying f in equations (19)
and (20) by f,. Following Ashby (1982) we set the asymptotic activation level
at 5 units and the mode of the adjusted criterion distribution at 2.5 units; the
distribution of the time to reach criterion is then:
OE,(f) — 2.5) :

Gn(t) = W, 0 <t< ), (20)
where ®(*) is the standard normal CDF. The numerator is ®(—2.5) when
t = 0, and approaches ®(2.5), or about 0.994, for large t; the term in the
denominator normalizes the truncated distribution.

Additivity of Factor Effects on the Mean and Variance

Given a specification of the number of units and their time constants, one can
use the CDF, G,(), to compute any statistic one wishes. Sufficiently little is
known about the model, however, so that one must perform such computa-
tions over a subspace of parameters, rather than determining statistics analyti-
cally as functions of the set of time constants, or independently of them. One
consequence is that the generality of our conclusions may be limited. In
considering the implications of the computed statistics for observed RTs one
must also keep in mind that the assumed cascade process may be concatenated
with other components, such as other cascade units or processing stages.

To investigate the model, we had to décide on a plausible range of values
for the set of time constants 7, and 7, that we manipulated. Given that the time
unit, #, is free to vary, only the ratios of time constants matter, so no loss of
generality results from specifying one arbitrarily; we thus defined 1.0 time unit
as the largest value. We chose 20:1 as the maximum ratio of time constants
to examine, as did Ashby (1982), so that in most calculations, T ranged
downward to about .05. (In supplementary calculations we worked with ratios
of time constants up to 100:1, and found that our-conclusions were not
altered, as will be seen in section 26.10.) Some considerations that might justify
the choice of 20:1 are as follows: (a) The contribution of a cascade unit to RT
is proportional to its time constant. Even if the highest factor level (longest
time constant, i.e., 1.0) is associated with as much as 300 ms, the lowest level
would then be associated with only 15 ms. Given what we know about
elementary cerebral events it seems unlikely that anything one would call the
same process could take both as much as 300 and as little as 15 ms. (b) A unit
is eliminated from the model when its time constant is set to zero. The time
constant associated with the lowest attainable factor level may thus be small,
but cannot be zero, as we don’t wish to permit the lowest attainable level of
a factor to entirely eliminate the process it influences. (c) It is likely that the
lowest level of a factor in an actual experiment is higher than the lowest
attainable level of that factor.
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Figure 26.1 Behavior of the mean and variance in two cascade models (see table 26.1). In
each panel the statistic is shown as a set of points plotted as a function of 7,, with 1, as the
parameter distinguishing the sets of points. The values of 7, are 0.04, 0.1, 0.2, 0.3, 0.4, 0.6,
0.7, 0.8, 0.9, and 1.0; the ten increasing values for each t, are generated by 1, = .05, .15,
..., .95. The ten curves in each panel are parallel, the least squares fit of an additive model to the
set of 100 points. Panel A: Means for model 2.1 in arbitrary units, f,. Panel B: Means for
model 4.3. Panel C: Variances for model 2.1 in arbitrary units, +?. Panel D: Variances for
model 4.3. The subsets of points marked by large squares and large hexagons indicate values
used for the interaction measures given in table 26.1.
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Table 26.1 Interaction of Effects on Mean and Variance in Six Cascade Models

100 I{p;} 100 I{o7}

 Ha. B vV 0;. 0%

Large Small Large Small
Model 1, T, Effects Effects Effects Effects
2 0 0 215 10.0 20.6 13.8
3.1 0.32 0 11.6 7.2 17.6 114
3.2 1.05 0 0.4 0.8 3.0 0.0
4.1 0.32 0.73 3.4 2.3 7.7 33
4.2 1.05 0.32 1.1 0.8 34 0.5
4.3 1.05 1.10 —0.1 —0.1 29 0.1

For each model are shown values of the time constants 7. and 7, of units
uninfluenced by factors A and B. (A zero time constant is equivalent to absence of
the corresponding unit; the first digit of the model’s designation is the number of
units with nonzero time constants.) The interactions are those obtained by
orthogonal combination of 7, = 0.04, 1.0 with 7, = 0.05, 0.95 (large effects), and
7, = 0.3, 0.7 with 7, = 0.35, 0.65 (small effects). Corresponding points for two of
the models are emphasized in figure 26.1. The interaction measure is the interaction
contrast as a percentage of the geometric mean of the main effects. (Normalizing in
this way has little theoretical justification and, because main effects are similar across
models, does not alter the relative sizes of interactions. Because the measure is
dimensionless, however, it permits comparison of interactions of effects on means
and variances, and also permits comparisons to data.) The models illustrated in
figure 26.1 are models 2 and 4.3.

In figure 26.1 are shown the means and variances generated in two factorial
simulations in which t, and 1, were varied over the one hundred points in the
orthogonal grid described in the caption.’® Panels A and B show the means
we obtained (points) together with a fitted additive model (parallel curves).
Results in panel A, from a two-process cascade, show an overadditive (posi-
tive) interaction. Consistent with earlier findings, the results in panel B, from
a four-process cascade in which processes a and b-were joined by fixed slow
processes ¢ (1, = 1.05) and d (t, = 1.1), show a remarkably good approxima-
tion to additivity. In panels C and D are shown the variances for the same pair
of models. Again the two-process model shows overadditivity, while effects
in the four-process model are remarkably additive. Table 26.1 provides de-
scriptions of six different cascade models, including those in figure 26.1,
together with measures of I{y;;} and I{67}. Confirming McClelland’s (1979)
suggestion for means, the interaction for both means and variances is negligi-
ble if the model contains a unit with a long time constant that is unaffected by
factors A or B.!! When fixed slow processing units are incorporated in a
cascade model, the pattern of factor effects on both the mean and variance of
the processing time can thus mimic the pattern produced by a stage model
with uncorrelated stage durations, a remarkable feature of the cascade model
given its dependence, in the stage model, on the RT being a sum of stage
durations, and given that units in a cascade model operate concurrently.!?
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Figure 26.1 also shows that the increase in mean processing duration with 7 is
approximately linear, and that as the level of a factor increases, the variance
considered as a function of the mean will accelerate. To test this property
requires a one-factor experiment that is precise (because the contrast in-
corporates three sample variances and three means) in which performance is
measured at three or more levels of that factor.!?

26.5 FOUR EXPERIMENTS

We tested the three models with five sets of RTs for correct responses from
four experiments, selected because they produced additive effects of two
factors on mean RT, and because RT distributions, or at least variances, were
available for individual subjects and for each combination of factor levels.
Factors we shall call “A” and “B” are indicated below. Where factors had more
than two levels, we selected pairs of levels (four conditions) for 2 X 2 analyses;
where not otherwise stated, analyses depend on only those pairs for which
mean RTs differed the most (“corners” of the design). For experiments 1 and
2 individual trials data were available, permitting distributional tests: for
experiments 3 and 4 we used only means and variances. Sizes n of data sets
are given as approximate mean observations per subject per condition. For
experiments 1 and 2 we tried to reduce effects of heterogeneity by performing
computations (such as moment calculations) within subsets of the data within
each condition, and then averaging the results. The factor used to partition the
data to form such subsets is indicated.

Experiment 1: Detection

Seven subjects produced simple reaction times, responding to a flash at one of
four locations by pulling a lever (Backus and Sternberg 1988, experiment 1).
Stimulus probability was high (.6) in one location and low (.05) in each of the
other three; the remaining probability (.25) represents catch trials. The high-
probability location changed from trial to trial, and was indicated by a central
visual cue. The four locations were corners of an imaginary rectangle centered
on a fixation point and separated from it by about 9 degrees of visual angle.
The factors we consider are foreperiod (A) and intensity (B): the interval from
warning signal to flash was one of six values: 750, 950, 1150, 1350, 1550, or
1750 ms; flash intensity was high, medium, or low. Levels of both factors
varied randomly from trial to trial. Data were collected in six one-hour sessions
after three hours of practice. For the present tests we restricted our analysis to
responses to flashes in high-probability locations, and to trials on which the
intensity was either high or low. The effect of foreperiod on mean RT is
U-shaped, and is more convincingly additive with intensity for short than long
foreperiods; we therefore used 750, 950, and 1150 ms as levels of A, and high
and low as levels of B. We excluded data for one subject, for whom the main
effect of A was markedly and significantly smaller than its effect on the other
six subjects, but with no effect on conclusions. Calculations were done sepa-
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rately for each session (there were six sessions) and then averaged over
sessions; n X 96.

Experiment 2: Identification

Five subjects saw numerals and responded with spoken digits (Sternberg 1969,
experiment V). The number of alternative stimulus-response pairs (na) was
either 2 or 8. Within each of these there was a 2 x 2 factorial design, with
factors stimulus quality (intact, or degraded by a superimposed checkerboard
pattern; A) and S-R compatibility (name x, name x + 1; B). Data were collected
from each subject in seven one-hour sessions, after five hours of practice. We
have conducted separate tests for each of the two levels of na. We rejected
seven of the observations (0.2%) for na = 2 and 14 (0.3%) for na = 8 as
outliers, because each differed by more than 4 SDs from the mean of the
remaining observations for that subject and condition. For na = 2 we reversed
the sense of the compatibility factor for one subject whose main effect was
opposite to the other subjects. Because of changes in analysis, means and
variances differ slightly from those reported by Sternberg (1969). For na = 2,
calculations were done separately for each numeral-repetition combination
(two numerals x repeat/nonrepeat of the prior stimulus), then averaged over
the four combinations; n & 204. For na = 8, calculations were done separately
for each numeral (eight numerals), then averaged over numerals; there were no
immediate repeats; n & 245.

Experiment 3: Classification

Twelve subjects served in an item-recognition experiment (Sternberg 1967).
The stimulus was a numeral, and the response pulling a lever. One lever
(“positive”) was correct if the stimulus was contained in a memorized set of
one, two, or four elements; otherwise the “negative” lever was correct. Posi-
tive responses were required on about 27% of the trials. Factors were stimulus
quality (intact, or degraded by a superimposed checkerboard pattern, A) and
set size (B). The analyses below are based on only the data from the more
frequent negative responses, and only from the second of two sessions, during
which an interaction between A and B present during the first session had
disappeared; n & 22.

Experiment 4: Overlapping Tasks

Twenty-two subjects performed two binary-choice tasks on each trial
(McCann and Johnston 1989). Task 1 was pitch discrimination: The stimulus
was a tone of one of two frequencies, with “high” the correct response for
the high tone, and “low” for the low tone. Task 2 was size discrimination: the
stimulus was a rectangle of one of four sizes; the correct response was a button
press with one hand for “very small” (S1) and “small” (52), and with the other
hand for “large” (S3) and “very large” (S4). We analyze the RTs in task 2.
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Table 26.2 Statistics Based on Means in Four Experiments

Experiment m.. my. M.y I{m;} + SE,(SE,)
1 222 15 36 —0.6 + 2.1(1.9)
2 (na = 2) 354 30 21 3.2 + 3.7 (4.5)
2 (na = 8) 449 53 102 14 4+ 3.8(2.7)
3 458 69 121 45+ 12.2
4 648 264 59 —4.0 + 14.7

The unit is 1 ms. Data for each experiment are from a 2 x 2 set of conditions.

m,, represents the overall mean RT, m,, the main effect of factor A on the mean,
and m_, the main effect of factor B. All main effects are statistically significant across
subjects. I{m;;} is the interaction contrast of means (see equation 3). SE, is based on
between-subject variation; where available we also show SE,, based on variation
pooled over data subsets and subjects. For experiment 1, with six subjects, each with
six data subsets, SE, is based on 5 df and SE,, is based on 35 df. Corresponding
degrees of freedom for experiment 2 are 4 df and 15 df for na = 2, and 4 df and

39 df for na = 8.

Factors were stimulus onset asynchrony (SOA; the time between onsets of tone
and rectangle: 50, 150, 300, or 800 ms; A) and discriminability (the closeness
of the rectangle to the classification boundary: near, for S2 and S3, or far, for
S1 and S4; B). Levels of both factors varied randomly from trial to trial. Data
are from the final 384 trials of the single session, following 128 practice trials.
Trials were excluded if (a) either response was an error, (b) RT, > 1000 ms,
(c) RT, > 1500 ms, or (d) either RT departed from its cell mean by more
than 3 SDs. For these reasons 2.5% of the trials were excluded; n & 47. See
Pashler and Johnston (1989) for discussion of overlapping tasks experiments.

26.6 ADDITIVITY OF FACTOR EFFECTS ON THE MEAN

In most of our tests we replace theoretical quantities by corresponding sample
estimates, and base our estimates of precision on differences between subjects.
Here we provide tests of the property shared by all three models, I{u;;} = 0,
by evaluating I{m;;}; results are shown in table 26.2, together with the overall
mean RT for the four experimental conditions considered, and the mean sizes
of the two main effects. The interactions are all small compared to the main
effects, and nonsignificant.'* SE, is sufficiently close to SE, so as to indicate
no important individual differences in I{m,;}.

26.7 RELATIONS AMONG THE VARIANCES
Additivity of Factor Effects
Here we provide tests of variance additivity, {62} = 0, which is expected

from the Slstage model and weaker variants, and is well approximated by some
variants of the cascade model. Results of evaluating I{s%} are shown in the
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Table 26.3 Statistics Based on Variances in Four Experiments

Experiment 52, s, 5%, I{s}} + SE,(SE,)  I{s}} + 2mym_, + SE,
1 6.1 2.8 3.1 —1.2+2.2(2.0) 10.1 + 3.0 (p = .02)

2 (na = 2) 26 9.2 4.0 —0.2 + 3.5 (3.8 14.7 £+ 2.0 (p = .002)
2 (na = 8) 13 4.4 8.4 1.8 + 0.8 (1.4) 116 + 21 (p = .005)

3 57 21" 53 18 + 27 180 £ 47 (p = .003)

4 258 140 42 —40 + 52 279 £ 69 (p = .0005)

The unit is 100 ms?. Data for each experiment are from a 2 x 2 set of conditions.
Where possible (experiments 1 and 2), we calculated variances for subsets of the
data and then averaged within subjects. s?, represents the overall mean variance of
the RT, s2, the main effect of factor A on the variance, and s2; the main effect of
factor B. All main effects are statistically significant except those with the superscript
ns. I{s%} is the interaction contrast of variances (see equation 4). I{s3} + 2m,.m_, is
the variance contrast whose expectation is zero, given the AP model (see equation
15). See table 26.2 for definitions of SE, and SE,. The p-values in the final column are
based on two-tailed t-tests of the AP variance contrast versus zero; the df is one

less than the number of subjects.

fifth column of table 26.3. Also shown are basic variance data for the four
experiments: mean variances over the four conditions considered, and mean
sizes of the main effects of factors A and B on the variance. The interaction
contrasts are uniformly nonsignificant. SE, and SE, tend to be large, how-
ever—often as large as the smaller of the two main effects. Although these
data are consistent with variance additivity, they are less convincing than the
means additivity results.

Evidence against the Alternate-Pathways Model

Results of the variance test for the AP model are shown for all five data sets
in the final column of table 26.3. Because m,, and m_, are orthogonal, we can
assume that E(mym ;) = p,.p..; we are therefore justified in substituting
sample moments for theoretical quantities in equation (15). The differences
between the two sides of that equation, which should be zero, are substantially
and significantly positive in every case. For all the data sets except experiment
2, na = 2, the expected interaction contrast is so large relative to the main
effects of both factors on the variance that both an i-crossover and j-crossover
are required.

26.8 THE SUMMATION TEST: FURTHER SUPPORT FOR THE
STAGE MODEL

We regard the summation test and the remarkable support it provides for the
stage model as the most important contribution of the present chapter; we
therefore describe the test and results in some detail for the three data sets to
which we could apply it.
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Violation of the Translation Condition

As discussed in section 26.2, if the translation condition (equation 6) were
satisfied by the T;;, then the summation test would add nothing to means
additivity. Conversely, given means additivity, the degree to which one is
impressed by success of the summation test should increase with the extent
to which the T;; distributions differ in more than location. That there are
significant main effects on the variance (table 26.3) is one indication that the
condition is violated, but the failure is more pervasive: in each of the three data
sets, each of the second, third, and fourth moments about the mean, f,, fi,,
and f1,, increases from condition 11 to condition 22 for every subject. The
effect is significant (by two-tailed t-test) for all four moments in experiment 1
and experiment 2, na = 2. For experiment 2, na = 8, there is sufficient varia-
tion in the magnitude of the increase of the third and fourth moments so that
the same test produces p-values of p = .05 and p = .08, respectively. The
increases are also large: over the three data sets, A}/ increases by an average
factor of 1.5, 43? increases by an average factor of 2.1, and 2} increases by
an average factor of 1.7.

The Test Procedure

Partitioning of Data Suppose that factor A influences stage 4, and factor B
influences stage b, and that the Slstage model is valid. If the data include a
mixture of levels of a third factor, C, that influences both stages (as level of
practice or particular stimulus-response pair might), then this can induce a
nonzero covariance of stage durations and cause the test to fail. If the level of
C on each trial is known, however, the data can be partitioned into subsets
within which the level of C is fixed, and the test applied separately to each
subset, eliminating the problem, at least for that factor. This is the approach
we took: In the na = 8 condition of experiment 2, for example, we noted that
stimulus numeral had a systematic effect on mean RT, and used it as the
partitioning factor, performing the test separately for the trials involving each
of the eight numerals, in each of the four conditions within each subject. An
incidental advantage of this approach is that it provided eight separate summa-
tion-test comparisons per subject, permitting within-subject measures of preci-
sion and tests of significance.

The Cartesian-Product Sums The summation test requires estimation of
the two distributions, T;; ,, and T, ,,. Consider the first of these, for
example. To obtain an estimate we created a sample by forming the Cartesian
product of the sets of observations in conditions 11 and 22, and, for each pair
in the product, determining the sum of its two members.*® Thus in experiment
2, na = 8, an observation set in each of the four conditions for a particular
numeral and subject contained about 31 RTs; the Cartesian-product sum that
provided the sample of T, ,, for that numeral and subject thus contained
about 31% = 961 values,'® as did the sample of T, ,, for that numeral and
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subject. We use F,; ,,(t, k) and E,, ,, (¢, k), respectively, to denote the empirical
CDFs of these summation sets (summation CDFs), where k ranges over the data
subsets in an analysis; thus, for eight subsets per subject and five subjects,
k=12, ..., 40.

Adjustment of Distributions For each pair of summation CDFs we com-
puted several statistics to be compared. However, before doing so we adjusted
the locations and scales of each pair. To make statements about the data
for each subject separately we planned to average the computed statistics
over data subsets within subjects and use subset differences as a basis for
variability estimates. To make statements about the group data and inferences
about the population of subjects, we planned to average the computed statis-
tics over subjects as well, and to base variability estimates on subject differ-
ences. The adjustment prior to averaging is based on the idea that any
systematic failures of the summation test are more likely to occur at points
with equal p-values in different pairs of distributions, than, for example, at
points with equal time values. Another reason for adjustment was graphical:
to increase the similarity of the shape of the average distribution to the shapes
of the distributions being averaged.

For each pair of summation distributions we let a location parameter 4, be
the mean of their medians, and a scale parameter ¢, be the mean of their
interquartile ranges. We then determined the means, 4, and ¢, of these parame-
ters over all data sets and performed the same linear transformation on all the
values (X) in the kth pair of summation distributions:

X* =i + (é—> X — &) : 1)
Sk

The result is that 4; =7, and & = &, for all k. For graphical purposes it was
important to perform a corresponding adjustment to create the transformed
component distributions Ty, T7,, T,,, and T,;, such that the summation
property would be preserved (e.g., T}, ,, = T}, + T55), as well as the relative
differences among the locations of the components. We accomplished this by
using the same transformation (equation 21), but with 4, and A, replaced by
14, and 14,, respectively.

Results of the Test

After forming the four ad]usted component CDFs, {E5(t,k)}, and the two
adjusted summation CDFs, £}, ,,(t k) and F}, ,, (t, k), for each data subset, we
computed their means over data subsets to obtain CDFs for individual sub-
jects. Means of the resulting CDFs over subjects are shown in figure 26.2. In
all three data sets, the agreement between the two summation CDFs is
remarkably good.

It is not obvious in which way the summation test will fail, if it fails. We
therefore examined three different sets of statistics of the adjusted distributions
in each pair, £}, ,,(t k) and E}, ,,(t k): proportions; quantiles and quantile-
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Reaction Time or Sum of Reaction Times

Figure 26.2 Results of the summation test for experiment 1 (panel A) and experiment 2 (panels
B, C). CDFs were adjusted and averaged as described in the text. At the left of each panel are
the average CDFs for each of the four conditions. At the right of each panel are the two
summation CDFs; to enhance the visibility of the small differences we use symbols instead of

curves. The scaling of the x-axis varies from panel to panel.
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Figure 26.3 Deviations from CDF equality in the summation test for experiment 1 (panel A) and
experiment 2 (panels B, C). On a greatly enlarged ordinate scale, each panel shows differences
(continuous curve) between the two summation CDFs shown in the corresponding panel of
figure 26.2. Broken curves show the standard errors of the differences, based on between-subject
variation, and computed at each 10-ms interval. In each panel the vertical line segments mark
the means over the two summation CDFs of five quantiles, £, t,s, .50, f.75, and £ g, tO
facilitate comparison across data sets.

based measures of location, spread, skewness, and kurtosis; and moments.
For details of the calculation method, see the discussion of equation (21) in the

\

Appendix. -

Comparison of Proportions For proportions, we compared the values of
each pair of empirical CDFs by determining their difference at each 10-ms
interval. To facilitate seeing pattern in the deviations, we display the differ-
ences in figure 26.3, together with pointwise + SE bands based on between-
subject variation. There is a suggestion of a difference that is positive at low
p-values and negative at high p-values, but the differences are small, and not
consistent among subjects. The impression of excellent agreement is confirmed
by tests: at each 10-ms time value we performed a f-test on the difference
between mean proportions, using the SEs shown in figure 26.3; none of the
tests was significant. Such tests can of course be performed only where the SE
is nonzero, which excludes any time value at which there is a zero difference
between summation CDFs for all subjects. The number of tests performed is
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Table 26.4 Summation Test: Quantile Measures of Location, Scale, and Shape

MED IQR SK KR
Experiment Diff + SE, Mean  Diff + SE, Mean  Diff + SE, Mean  Diff + SE, Mean
1 0.2 +09 434 —02+26 38 1.3+72 30 09+19 18
2 (na = 2) 0.9 + 5.0 705 01+29 91 37+55 18 0.8 +05 16
2 (na = 8) 1.2+ 3.8 894 32421 64 —53+74 18 —04+05 16

We estimated quantiles for T, ,, and T, ,;, and combined them to provide robust measures of
location (median, MED), scale (interquartile range, IQR), and shape (skewness, SK, and kurtosis, KR)
for each distribution. For each statistic is shown the difference between the two estimates (Diff ), a
standard error SE, of the difference based on between-subject variation, and the mean of the two
estimates. See the text for definitions of SK and KR. The unit is I ms.
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thus a conservative estimate of the number of opportunities for the Slstage
model to fail. For experiments 1, 2, na = 2, and 2, na = 8, respectively, there
were 42, 66, and 61 tests; they are unlikely to be independent, of course.

We also did hundreds of exploratory tests on the differences between the
summation distribution proportions for individual subjects. P-values were not
corrected for numbers of tests (Miller 1986; Johnson and Tukey 1987), so they
should be taken as indications only. Among all the statistics of the CDFs we
examined (proportions, quantiles, and moments), the closest we came to
finding systematic deviations was in f-tests of the differences between pro-
portions at each 10-ms time value for which the SE was nonzero. In experiment
1, none of the 173 tests was significant. In experiment 2, na = 2, 18 of the 318
tests were significant; in experiment 2, na = 8, 15 of the 241 tests were
significant. These numbers would of course be consistent with the hypothesis
of no difference if the tests were independent, but they are not, and the
similarity of the patterns suggests that although minor, the deviations may
be meaningful.!”

Comparison of Quantiles We compared each of a set of quantiles of the
two distributions, £, for p = .05, .10, .25, .50, .75, .90, .95. We also compared
three different functions of those quantiles, a robust measure of spread, IQR =
t 55 — t,5, a robust measure of skewness, SK =tq45 + tq5 — 25, and a
robust measure of kurtosis, KR = 10(f g5 — ;5 + 55 — f95)/IQR. In each
case we determined differences between corresponding values for F}, ,, and
F, 1. Table 26.4 shows that in no case were the differences between distribu-
tions in location, spread, or shape measures significant, and in most cases the
differences were small relative to the size of the quantities compared. Within-
subject tests, based on between-session (experiment 1) or between-stimulus
(experiment 2) variation, also failed to find significant (p < .05) differences
between members of any of the four pairs of measures.

Comparison of Moments The interaction contrasts of means and variances,

in tables 26.2 and 26.3, respectively, are equivalent to testing the differences
between the first two moments of F}, ,, and F}, ,,; we also examined the
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third and fourth moments and found none of the differences to be significant,
in either within-subject or between-subject tests.

26.9 THE MIXTURE TEST: FURTHER EVIDENCE AGAINST THE
ALTERNATE-PATHWAYS MODEL

Based on the variance test, we noted in section 26.7 that the AP model can be
decisively rejected for these data. For two reasons, however, we shall discuss
application of the mixture test to the data from experiments 1 and 2: first,
because the mixture test appears to be more powerful in cases where the model
is wrong but where the variance test is not decisive, the mixture test would
be more persuasive where the model is correct; and, second, because the
pattern of deviations is instructive.

The Test Procedure

Adjustment of Distributions Variation in a factor that interacts with both
A and B will not cause the mixture test to fail (section 26.3), as it could the
summation test; hence we did not divide the data into subsets within subjects.
For each subject we estimated the four component CDFs and averaged them
in pairs to obtain Fr,, 1,,) = 3[F;(® + F,(#)] and Fix( 5, 1) =
3[F12(H) + F,;()). To average the CDFs over subjects for a graphical display
free of artifacts (features in the averages but not in the individual distributions)
we eliminated between-subject differences in location and scale before averag-
ing. To do this while preserving the relation between the two mixture distribu-
tions we applied the same transformation to the two mixture distributions for
each subject, a transformation defined for each subject so as to equate the mean
locations and mean scales of the two distributions across subjects.!® We then
averaged the transformed CDFs to obtain those shown in figure 26.4.

Results of the Test

All three data sets show the same systematic pattern of differences between
the two mixture distributions: instead of being equal, the left side of equation
(9) exceeds the right for short RTs, and the right side exceeds the left for long
RTs. As discussed in section 26.3, this is the pattern expected from a stage
model in which the duration of each stage responds to an increase in level of
the corresponding factor by lower frequencies of short durations and higher
frequencies of long ones, and in which, unlike the AP model, both stages
contribute to all trials.

In all three cases shown in figure 26.4, the spread appears to be greater for
Fonix(1,, 7, than for F 7 . indeed, it can be shown that the difference
between the two variances is the same as the statistic used in the variance test.
However, because the mixture distributions must be identical in every respect,
according to the AP model, determination of the mixture distributions pro-
vides the opportunity of using robust estimates of spread. We found, for
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Table 26.5 Mixture Test: Integrated Differences between Two Mixture Distributions

Experiment  Small-RT Statistic Large-RT Statistic All-RT Statistic

1 926 + .054 (p < .0001) —.854 £+ .094 (p = .0003) .901 £ .051 (p < .0001)
2 (na = 2) 480 1 .248 (ns) —.793 £+ .130 (p = .004) .757 £ .057 (p = .0002)
2 (na = 8) 2996 £+ .003 (p < .0001) —.999 £ .001 (p < .0001) .997 £ .002 (p < .0001)

The three statistics are defined in the text. In each case the mean + SE, is shown, with values of SE,
based on between-subject variation; p-values are based on two-tailed t-tests of the means versus the
zeros expected from the AP model. Normalization requires all three statistics to lie within the

[—1, + 1] interval.

example, that s;, a measure of spread based on the biweight (Mosteller and
Tukey 1977, 208), is substantially more powerful than the sample variance,
for all three data sets. We prefer, however, a test that we devised for the
present purpose that would permit separate testing of conditions 17 and 18
and would be especially sensitive to the pattern of deviations from the AP
model that would be expected from a stage model in which factor levels
influenced the frequencies of short and long stage durations, as discussed in
section 26.3.

Consider the difference between the two mixtures, A(f) = Fonix(ry,, Ty —
Fonix(T,,,1,,)(b). For a stage model in which minimum stage duration varies with
factor level it is possible that A(f) will be positive for small RT and negative
for large RT (sec. 26.3). The numerator of the small-RT statistic is the integrated
(signed) difference A(H) for 0 < RT < RT 5, where RT 5 is the mean of the
medians of the two mixtures. If the mixtures were identical except for sampling
error (AP model) then the average magnitudes of positive and negative
deviations A(f) would be expected to be equal, so that the integrated or
averaged A(H) taken over any interval would have zero expectation. The
normalizing denominator of the small-RT statistic is the absolute difference
|A(#)| over the same RT-range. If all the deviations were positive (negative)
then the statistic would take on its maximum (minimum) value of + 1 (—1).
According to the AP model the small-RT statistic should thus be close to zero;
according to the stage model and the argument associated with equation (17)
it may be positive. The large-RT statistic is the integrated signed difference
A(f) over the complementary interval RT > RT s, similarly normalized by the
integrated absolute difference over the same RT-interval. According to the AP
model this also has a zero expectation; according to the stage model and the
argument associated with equation (18) it may be negative. The all-RT statistic
is the difference (small-RT statistic) — (large-RT statistic), normalized by the
integrated absolute difference over the entire RT range. According to the AP
model this has a zero expectation; according to the stage model it may be
positive. Values of these statistics are unaffected by the distributional adjust-
ment that we performed for purposes of graphical display.

We computed the three statistics for each subject and each of the three sets
of data, with the results shown in table 26.5. Mean values of the statistics over
subjects are remarkably close to their maximum possible values in several
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cases. The strength of the evidence against the AP model from the mixture
test is substantially greater than from the variance test (table 26.3, last column;
compare significance levels); furthermore, the pattern of deviations is con-
sistent with expectations from an Slstage model (sec. 26.3). Because they
appeared to be especially sensitive, we applied the same three integrated-
differences comparisons to each of the three pairs of summation CDFs (fig.
26.2). None of the nine comparisons even approached significance; the largest
t value was 1.6 (with 4 df).

26.10 EVIDENCE AGAINST THE CASCADE MODEL

That several features of the Slstage model could be approximately mimicked
by variants of the cascade model (sec. 26.4) led us to consider in what ways
its behavior might be constrained. Instead of trying to derive such additional
properties analytically, we searched for them by exploring its parameter space.
We did this for each of the six models described in table 26.1. For each model,
7, and 1, are fixed, while 7, and 1, are permitted to vary. By assigning values
to 1, and 1, we specify the model for one condition in a hypothetical experi-
ment sufficiently well to be able to compute its distribution of cascade dura-
tions. We can then generate a random sample of the durations, or determine
the expected value of any statistic. We limited ourselves to the mean and
variance; for two of the models, results are illustrated in figure 26.1.

The four conditions in any 2 X 2 experiment that can be described by the
model correspond to points at the corners of a rectangle in the (z,, 7,) space:
(a1, To1)r (Tars Toz)r (Taz, To1), and (145, Ty, ). For any such set of four points we
can determine the expected values of four means and four variances; these
eight condition statistics can be selected and combined in different ways to
produce a single number for the experiment, an experiment statistic. A set of
eight such condition statistics for one model is represented by the eight points
given emphasis by large squares in figures 26.1B and 26.1D. Examples of
experiment statistics that we have already seen are the interaction contrasts

K p;;} and I{a}}.
Allowed and Forbidden Regions in a Statistic Space

For present purposes we used two new statistics, described below. With two
such statistics, each hypothetical experiment is mapped onto a point in a
two-dimensional statistic space, where each statistic is represented by a value
on one dimension. In such a space the model’s capabilities are represented by
an allowed region, defined by the set of such points for all possible experiments,
given the model. Results that the model cannot generate are represented by
the unoccupied or forbidden region. Any real 2 x 2 experiment produces a
single point in the two-dimensional statistic space; to test the model one asks
whether this point falls into the allowed or forbidden region, taking sampling
error into account.
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Dimensions of the Statistic Space

Figure 26.1 (as well as Ashby’s 1982 work) suggests that the cascade model
may constrain the relation between location and spread, which is reflected in
our choice of one of the experiment statistics. (Conditions that slow the
model's response tend to do so by slowing the rate at which activation grows,
and a slower growth rate increases the RT spread induced by the fixed
criterion variance.) ;

Examination of the relation between locatlon and spread requires some care
in the choice of measures. First, because the time unit in the model is arbitrary,
we must either estimate it or use measures that don’t depend on it. Second,
we must allow for the possibility that in generating the observed RTs the
postulated cascade mechanism, influenced by factors A and B, is concatenated
with other processes not influenced by those factors, such as the response
mechanism assumed by McClelland (1979) and Ashby (1982) or supplemen-
tary stages or cascade units, processes that might contribute, along with the
cascade mechanism, to both location and spread. Our measures should reflect
the cascade mechanism alone, whether or not such supplementary processes
are present.

To avoid distortion due to such supplementary processes we use statistics
defined as factor effects, i.e., as differences between RT measures at different
factor levels, exploiting the assumption that the supplementary processes are
unaffected by factors A and B. Not all measures will serve, however. Thus, if
RT, and RT, are RTs obtained in conditions 1 and 2, M is a measure of
location or spread, and T, and T, are the contributions to the RT from the
cascade mechanism, then we require that M(RT,) — M(RT;) = M(1I,) —
M(T,,). If Ty represents the duration of the supplementary processes, this
condition in turn requires that any measure be additive, in the sense that
M(RT) = M(T;) + M(Ty). The mean satisfies this requirement for the loca-
tion measure, but an additional assumption is needed to select an appropriate
measure of spread. One possibility is the variance; another that has been
applied in testing the cascade model (Ashby 1982) is the standard devia-
tion. The variance is additive if cov(T¢, Ts) is. zero or constant, or if the
supplementary processes consist of one or more additional cascade units.
Additivity of the standard deviation requires that |cov(T¢, Ts)| = 07,07, its
maximum possible value. We believe that variance additivity is more likely, so
we chose the variance as our measure of variability. (Our conclusions may
depend on the validity of this assumption.) Let #;; and 67 be the mean and
variance of the cascade duration under factor levels i and j, us and a3 be the
mean and variance of Ty, and f, be the scale factor expressmg the model’s time
unit in ms. We can then write p; = t,1;; + s and o; = £,607 + a3 To link
the cascade process under study to the data, we constructed statistics that
eliminated ps and 62 (by taking differences of quantities assumed to be addi-
tive), and eliminated £, (by forming dimensionless ratios of these differences).
The first statistic relates the change in variance to the corresponding change
in mean, as both factor levels are increased:
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032 — 011 _ 03, — 07,
(22 — 11> (a2 — 111)?
Our explorations suggest, for example, that the values of the variance-change
statistic that the cascade model can produce are bounded below. The second

statistic is the difference between the two main effects, normalized by their
sum:

variance-change statistic = (22)

| ta. — H.al _ 114, — 1.4l _ 1721 — ’712|’(23)
Ba. + Na. + N.a N22 = M1
which can range from zero to one. We shall see that larger main-effect

differences are associated with more severe bounds on values that the model
can produce for the variance-change statistic.

main-effect difference statistic =

The Test Procedure

We studied each of the six models described in table 26.1. For each model we
determined the mean and variance of the processing time for each of the 100
points in the two-parameter grid used to create figure 26.1. Within this grid
there are 2025 possible simulated 2 x 2 experiments in which both factors
have nonzero effects; for each of these we computed the variance-change
statistic and the main-effect difference statistic. Results of these computations
for model 3.1 are shown as an example in figure 26.5A; each plotted point
represents the outcome of one simulated experiment, and the allowed region
of the model is included within the surrounding contour, the convex hull of
the set of points. The figure, which shows the left-hand portion of this region,
reveals that values of the variance-change statistic that can be achieved by the
model are bounded below, and that the bound varies with the main-effect
difference. The allowed regions are similar for the six models, as shown by
figure 26.5B, where the contours for three of them are displayed on an
expanded abscissa. The similarity suggests that this feature of the cascade
model depends little on values of the fixed time constants, and is thus quite
general.

We took this analysis further in three ways. First, we determined whether
the quantization of the parameter grid contributed to the constraints, by
sampling parameter values in .01-unit steps in the range (.05, 1.00). This caused
the allowed region (dotted in fig. 26.5B) to expand upwards, but not to the
left. Second, we extended the parameter range in model 3.2 to encompass a
100: 1 ratio, despite its implausibility as discussed in section 26.4, again using
a sampling method. The result is the leftmost contour in figure 26.5B, which
reveals only a mild relaxation of the lower bound. Finally we examined the
small-sample properties of the main-effect difference and variance-change
statistics by using model 3.2 with several pairs of (t,, ;) values to generate
random samples of the same size as in our experiments, to check for bias; we
found no evidence of bias.
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Figure 26.5 Data points versus allowed and forbidden regions of the cascade model in a
two-dimensional statistic space. Panel A: Each of the numerous small points represents the
expected values of the two statistics for one simulated experiment generated by model 3.1 (See
table 26.1.) The set of 2025 points continues off the plot to the right. Surrounding the points is
the contour defined by their convex hull, which includes the allowed region of the model,
subject to considerations discussed in the text. Also shown by larger points are data from the
four real experiments, together with lines marking 4 SE, for each statistic, based on between-
subject variation. For each of experiments I and 3 (2 x 3 designs), there are three points, one
for the corners of the design (also discussed elsewhere in this chapter), and one each for the two
other possible 2 X 2 experiments. Experiment 1: filled octagons, the top point for levels of
factor B (foreperiod) of 950 and 1150 ms, the middle point for 750 and 950 ms, and the
bottom point for the corners, 750 and 1150 ms. Experiment 2: unfilled squares, na = 8 to the
left, na = 2 to the right. Experiment 3: filled triangles, the left point for levels of factor B (set
size, 5) of s = 2 and s = 4, the right point for s = 1 and s = 2, and the middle point for
the corners, s = 1 and s = 4. Experiment 4: unfilled ‘diamond. _Parel B: Note the expanded
abscissa scale. Contours abutting and within the dotted area mark the allowed regions for
models 2, 3.1, and 3.2, all with time-constant ratios no greater than 20:1. The contours for
models 4.1, 4.2, and 4.3, with the same 20:1 constraint, fall almost entirely between those for
models 3.1 and 3.2. The contour labeled “3.2, 100:1” shows the allowed region when time-
constant ratios are permitted to increase to 100:1. Data points as in panel A; experiment 2,
na = 2, is now off scale.
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Test Results: Data versus Allowed Region

Also shown in figures 26.5A and 26.5B are points that represent the same pair
of statistics for each of the four experiments, together with lines indicating
+ SE based on between-subject variability. For the detection and classification
experiments, in which one of the factors had three levels, the figure shows the
statistics for each of the three possible 2 x 2 designs. (Within each of these
two sets of three, values are not independent.) For most of the data points the
variance-change statistic is too small for the model.

Excess Model Variance in the Best-Fitting Case

To gain further insight into the cascade model we considered the version of
model 4.3 (t, = 0.04, 0.4; 1, = 0.05, 0.95) that provided the best fit within the
two-dimensional statistic space (fig. 26.5) to the data from experiment 1 with
levels of factor A of 750 and 1150 ms. When we adjusted the time unit ¢, in
the model by forcing it to produce agreement with the separation between the
means of conditions 11 and 22, we found that the average variance of the
distributions produced by the model is about twice as great as the variance in
the data. Thus the variances in the model are too large relative to the main
effects on the means. This can be seen by comparing the simulated distribu-
tions on the left side of figure 26.6 with the actual distributions in figure
26.2A. Both the upper and lower tails of the four distributions tend to be more
separated in the data than in the model, where they appear to fan out from
common points. This property may reflect an essential feature of the cascade
model: its continuous transmission of activation. Because activation in the nth
unit starts rising immediately when the stimulus is presented, the increment in
activation that triggers the response occasionally occurs shortly after the
stimulus is applied, even in the slowest condition. And because activation in
the fixed slow process needed for additivity continues to rise for a long time,
the model produces a few slow responses, even in the fastest condition.
Adjustments of the model that might reduce the discrepancy include reducing
the spread of the criterion distribution, or changing its shape so as to introduce
a high threshold for triggering the response.

Application of the Summation Test to a Cascade Mechanism

On the right side of figure 26.6 is shown the result of applying the summation
test to the four simulated distributions.!® Consistent with Ashby’s (1982)
findings, the test works remarkably well. Thus, just as mean and variance
additivity fail to discriminate cascade and stage models, so does the summa-
tion test (though this is known only under limited conditions); this observation
emphasizes the importance of discovering necessary conditions for that test.
One possibility is that the conditions that permit the cascade model to
emulate a stage model (the incorporation of one or more fixed units with long
time constants) are also ones under which it approximates a stage model in
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Figure 26.6 Summation test applied to the cascade model. Results of simulation by cascade
model 4.3 of the data from experiment 1 (detection) shown in figure 26.2A. Simulated RT
distributions from the four conditions are shown on the left, with a constant (121 ms) added
to all simulated times; the two convolutions of these distributions, obtained by applying
numerical convolution to the pairs of density functions { fr,,.fr,,} and { fr,,fr,,} are shown
on the right. The maximum (vertical) separation between the two functions on the right is .001.

function. In the defining conditions of a stage model, process @ has completed
its work before process b starts, and, assuming selective influence, the time
required by process b is independent of systematic changes in the rate of
process a. If we think of the slow unitin a cascade model as placed between
units 2 and b, then it seems possible that its presence causes these two stage-
model conditions to be approximately satisfied. This conjecture is encouraged
by some exploratory comparisons of the activation functions of unit a alone,
and of units 4, b, and ¢ together, using several different proportions of
asymptotic level to define a process having “completed” its work; the two
conditions were approximately satisfied.

Future Tests

Quantitative analyses of the cascade model, such as those above, may help to
guide future tests. For example, reference to figure 26.1 will suggest why
experiments with more than two levels per factor may challenge the cascade
model more severely: Suppose that an increase in level of factor A induces a
given change in mean RT by changing t, from 7, to 7,;. Because the function
relating variance to 7 accelerates, the corresponding change in variance is
greater if 7,, is greater. Requiring the model to fit a third, faster condition
(vielding t,,) as well, will force 7,, and 1,5 to increase, which in turn will
increase the variance-change statistic associated with levels 2 and 3, and hence
perhaps the disparity between model and data. Future tests using 2 x 2
designs can also be guided by figure 26.5, which shows that the model
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is challenged more by experiments with unequal main effects. (Shaw 1984
provides another example of the use of quantitative theory to guide experi-
mental design.)

26.11 DISCUSSION

Additivity of the effects of experimental factors on mean RT has often been
taken to suggest the existence of stages. In this chapter we have considered two
alternative explanations of additivity, one new (the alternate-pathways model)
and one developed earlier (the cascade model). That additivity has more than
one possible explanation has long been taken for granted, at least by critics of
the additive-factor method, and is hardly surprising. Nevertheless, the AP
model is the first alternative to the stage model we know of that produces
exact additivity; the cascade model approximates additivity with some param-
eter values but not others. The AP model has the virtue of being simple and
plausible, yet readily testable because it strongly constrains the data. It is
noteworthy that three models so different in spirit can explain the same
pattern of means. Because of this, discriminating among the models has
required analysis of other aspects of the data. Thus we have tried to discover
what the models predict about variances and entire distributions, and have
confronted these predictions with five sets of data from a wide range of RT
experiments.

The most important feature of this work is the new evidence for stage
models. This consists of: the dramatic failures of the AP model for all five data
sets (tables 26.3, 26.5; fig. 26.4); failures of the cascade model (figs. 26.5,
26.6); and successes of the Slstage model (tables 26.3, 26.4; figs. 26.2, 26.3,
26.4). The successes of the summation test (table 26.4; figs. 26.2, 26.3) seem
especially persuasive.?° It should be kept in mind that the summation test was
applied to only two experiments (detection and identification), which, more-
over, have features in common, such as verbal instructions and visual stimuli.
However, the two experiments also differ in several ways, such as the mean-
ingfulness of the stimuli, the number of possible responses, the nature of the
responses (the muscles used, for example), and the ranges of RTs.

One important limitation of the present work is that it is not altogether
clear what success of the summation test implies: the necessary conditions—
stronger than the Gstage model, but weaker than the Slstage model—have
yet to be discovered. We do not know why the cascade model satisfies the
test under some parameter settings; perhaps it is because with those parame-
ters it resembles a stage model. Another important limitation of this work lies
in our uncertainty about how to interpret the failures of the cascade model.
They may reflect fundamental constraints of an interesting class of models of
which it is a member, or may depend on details, such as the criterion distribu-
tion or the law that governs the growth of activation. Rejection of the cascade
model for these data may thus be less interesting than rejection of the much
simpler, and in that sense, weaker AP model. One interesting issue here is how
the failure of the AP model bears on the validity of the complementary set of
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mixture models (Yantis, Meyer, and Smith 1991) in which the pathway proba-
bilities vary while the pathways remain fixed. A final limitation worthy of
mention is that the “off the shelf” experiments that provided the data we used
had not been designed to discriminate among the three models. It seems likely
that future work will suggest better experiments for this purpose; factors with
more than two levels, and experiments with more than two factors, for
example, are likely to be helpful.?!

When alternatives to the stage model have been proposed in the past, it has
not been clear how they constrain the data, that is, what they predict. Nor has
it been clear what the stages explanation of additivity predicts, although the
work of Meyer et al. (1984, 1988), Miller (1988), and Schweickert (1985), for
example, has taken important steps in that direction. If an explanation is based
only on the result that suggested it, it may not be especially convincing, and
a preference for that explanation over competitors may be only a matter of
taste. For example, Taylor (1976) proposed that additivity may arise because
the factors changed one stage “in an additive way” (181). Because it resembles
the fact it explains, and predicts nothing, this is not a satisfying explanation.
However, as long as competing explanations also predict nothing, it is hard to
dismiss. It is much easier to dismiss when a competing explanation makes a
successful prediction. In particular, the summation test, based on Ashby and
Townsend’s (1980) suggestion, will help compare stage models to competi-
tors. A traditional difficulty associated with testing the properties of RT
distributions other than their locations is the large sampling error associated
with the variance and higher moments, especially given the high tails and
outliers of some distributions. Along-with the mixture test developed for the
AP model, the summation test permits the use of robust measures of spread,
skewness, and so forth, which are likely to be less variable than the sample
moments. -

The evidence for the existence of something like stages (independently
changeable, serially arranged operations) is now both deep and broad. It is
deep—relatively extensive and persuasive—for the detection and identifica-
tion experiments. It is broad—relatively general—because Roberts (1987)
found evidence for stages in animal response-rate experiments, which have
little in common with human RT experiments beyond the use of vertebrate
subjects.

The improvements in the evidence have come at roughly the same time that
theorizing in human experimental psychology has shifted toward models of
high complexity. Astrophysicists have a joke: Never propose a theory that can
be tested in your lifetime. By proposing complicated theories with many free
parameters, psychologists seem to be moving in all seriousness quite close to
this ideal. Complex models are usually “tested” by asking if they can fit
another data set. The virtue of such models, in the eyes of their proponents,
is often the range of the data they can fit. This is indeed a virtue; a model that
explains only one result is not very interesting. Such tests are incomplete,
however. They should increase our belief in the model only if they are
sufficiently extensive to identify forbidden as well as allowed regions in the
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statistic space. This requires knowing what the model cannot do, as well as
what it can (cf. Massaro 1988). And determination of what a complex model
cannot do may require a vast amount of computation.

The shift toward relatively complex models has been motivated, at least
in part, by considerations of plausibility. When choosing a theory, this is a
good place to start. The message of this chapter, however, is that something
implausible is apparently true: The vertebrate brain, in a wide range of situa-
tions, has a simple functional structure.

APPENDIX: PROOFS AND COMMENTS ON EQUATIONS

Equation (3): Additivity of factor effects follows from additivity of stage
durations and its preservation under expectation, and from the selective in-
fluence of factors A and B on T,; and T, respectively. Take expectations in
equation (1), replace the y;; in equation (3), and collect terms. (See Sternberg
1969.)

Equation (5): In a proof by construction, which also suggests a method of
testing, note that T;; + T,, and T;, + T,; can each be regarded as the sum
of RTs that results from concatenating two stage models; the two sums
are the same because the two concatenations contain the same stages at
the same factor levels, just differently ordered. To elaborate, T;; + T,, =
Tl +1Ty; + Tal+1Ty,, and Tpp + Ty = Toy[+]1T,; + Toa[+1T,,. Here,
“+" represents summation of RTs from different conditions, which are sto-
chastically independent by construction (sec. 26.8). In the first sum, for exam-
ple, the construction method implies that T, and T,; are each independent of
T,, and T,,. Summation of stage durations that contribute to the same RT is
represented by “[+1.” Given stochastic independence of stage durations, the
two kinds of summation are equivalent. Because the two sums are composed
of the same independent random variables, they have the same distribution.

In a more formal proof, we note that summation of random variables (RVs)
requires them to be defined over the same sample space. For the original RVs,
{T,;} and {T,;}, there are, instead, four different sample spaces, one each for
conditions 11, 12, 21, and 22. For example, T,; corresponds to two RVs, one
in condition 11 and one in condition 12; let us call them T,,; and T,;,,
respectively. By the assumption of selective influence, factor B has no effect
on T,,; hence T,,, and T,,, are identically distributed. To permit the desired
summation we first replace each of these identically distributed pairs of original
RVs by a new RV with the same distribution, such that the four new RVs are
mutually independent and are defined over the same sample space. For exam-
ple, we replace T,,, and T,;, by T;;. (t is well known that such new
RVs whose distributions are the same as the marginal distributions of the
original RVs can be defined.) Because of the assumed stochastic independence
of the original RVs (such as T,; and T, which sum to Ty,), the sum of each
pair of new RVs (such as T; + T;,) has the same distribution as the sum of
the corresponding pair of original RVs. Now, however, T;; and T,,, for
example, are defined over the same sample space, thus permitting us to define
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their sum, which we write as above, except that the {T,;} and {T,,} are
replaced by the {T;} and {T},}.

Given the independence of the {T;;}, equation (5) is equivalent to additivity
of cumulants of all orders: I{x,;;} =0, r > 1 (Sternberg 1969). However,
because of instability of their estimates, testing equation (5) by using the
higher cumulants is less attractive than using other aspects of the distributions,
which the summation test makes possible.

Equation (6): To show that equation (5) is implied by this translation
condition plus means additivity, observe that the condition implies T, +
T,, =11+ tay +t+ ¢t and Ty, + T,y = gy, + ppy + £+ £ where the
subscripts on the {#;;} are dropped to emphasize the equality of their distribu-
tions. Given means additivity, p;; + gy, = iy, + Up;, SO the two sums
have the same distribution.

Equation (8): Use equation (7) to expand each term, and collect terms. As
for equation (5) of the Slstage model, there is a proof by construction that also
suggests a method of testing. Write equation (8) as equation (9), to which it is
equivalent. The left side of this equation is the CDF of an equal-probability
mixture of the processes that generate T, and T,,, and the right side similarly
for T,, and T,,. The two corresponding mechanisms each have four alternate
pathways with pathway probabilities 3p, (1 — p), 3p, and 3(1 — p); the two
mechanisms are equivalent because they differ only in the ordering of the same
four pathways. The suggested mixture test is to pool equal-size samples from
T,, and T,,, and from T,, and T,,; CDFs of the resulting data sets should be
equal, except for sampling error. If sample sizes are unequal, then comparison
of the means of pairs of corresponding CDFs permits better use of the
information in the data. As in the summation test, equality of CDFs implies
identity of any statistic, so that one can choose measures with desirable
sampling properties, for example.

Equation (11): Differentiate equation (8) with respect to f to get density
functions, multiply by #, and integrate with respect to t.

Equation (14): Additivity of the means (I{;;} = 0) permits us to replace
K1z, M2y, and i, in I{#izj} by g1 + Mg Bi1 + paro and pyy + pg + pag
respectively. Do so, expand, and collect terms. ~

Equation (15): This failure of variance additivity for the four component
distributions is equivalent to equality of variances of the two mixture distribu-
tions specified in equation (9), the latter, however, can be tested by using
measures of spread that may have more desirable sampling properties than the
variance.

Equation (16): The variance of an equal-probability mixture of X and Y is
(6% + 6#)/2 + (uy — py)?/4. Use this to rewrite the terms on the left, and use
variance additivity to eliminate the terms in 2. Now expand, and use equation
(14) and its method of proof.

Equation (17): From equation (8), F,(f) + F,,(f) = F;;(f) + F,,(f). Now
note that F,,(f) > 0, (f > 0).

Equation (18): From equation (8), I:'lz(t) + FZl(t) = ﬁll(t) + ﬁzz(t). Now
note that F,, () > 0, (t > 0).
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Equation (19): See McClelland (1979).

Equation (20): See Ashby (1982) for proof of an equivalent result. To
generalize from a criterion distribution with unit variance to one with variance
o2, replace ®(x) by ®(x/a,) in both numerator and denominator. Because the
normal criterion distribution has nonzero probability when t < 0, G,(#) has
accumulated probability .006 at # = 0. In our computations we have set
G,(0) = 0. To compute the expected mean and variance we used a discrete
approximation of equation (20), truncated at a f-value great enough for
sufficient accuracy, then differentiated numerically to obtain the density func-
tion, then summed after multiplying by " for the rth raw moment. For a
random sample from the G,(f) distribution we used G, !(U), where U is the
value of a random variable distributed uniformly on the [0, 1] interval.

Equation (21): Calculations for the summation test, including this adjust-
ment, were performed in the following order: (a) the data were divided into
subsets within each subject, each subset containing RTs from four conditions,
and indexed by k as described in the text. Then, for each subset, (b1) the
Cartesian product method (see text) was used to provide two summation sets;
(b2) the median and interquartile range were computed for each summation
set, and averaged over the two summation sets, giving 4, and &;; (b3) 4,
and ¢, were used in equation (21) to adjust each value in the two summation
sets, providing two adjusted summation sets; (b4) the statistic—proportion,
quantile-based measure, or moment—was computed for each of the two
adjusted summation sets; (b5) the difference between the two values of the
statistic (one for each summation set) was found. Finally, (cI) for each subject
the differences were combined over subsets to provide a mean and a within-
subject SE; (c2) for the set of subjects, the subject means were combined to
provide a final mean and a between-subject SE.

Equations (22) and (23): Replace the ;; and 67 by their equivalents in 7,
07, ps, 03, and #,, and combine terms.
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1. The theory below is limited to situations in which there are just two factors and two
underlying processes, and where each factor has just two levels. It is straightforward to
extend these developments to cover experiments with more than two factors, and/or more
than two levels per factor. This is done to some extent in the data analyses that follow.

2. Given two or more mechanisms, each of which produces additive effects of the same pair
of factors on mean RT, hybrid mechanisms can be created for which that property is preserved.
One type of hybrid is the serial concatenation of two such mechanisms; another is a probability
mixture. Consideration of such hybrids is an interesting problem for future work.
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3. Miller, van der Ham, and Sanders (unpublished manuscript) have drawn the same conclusion.
4. See the Appendix for proofs and comments on equations.

5. The summation test is a stronger test of the stage model than merely the additivity of means
and variances. That is, equations (3) and (4) are not sufficient for equation (5). Again we thank
Frank Norman for an example: Suppose that both of two factors have nonzero effects, and that
Fy. Fi2, By, and F,, satisfy equations (3) and (4). Then if the F; are all Gaussian distributions,
equation (5) is satisfied. But if the F; are all gamma distributions, equation (5) also requires that
the differences among them are limited to their shape parameters; their scale parameters cannot

differ.

6. Alternative pathways should be distinguished from parallel processes. However, an AP
mechanism could result from a pair of self-terminating parallel processes if there were fluctuating
dominance of one process over the other, with no overlap between completion times of the
dominant and nondominant process, and if the probability of dominance was unaffected by
factors A and B. Alternating cerebral dominance (Weintz et al. 1983) exemplifies a mechanism
that might produce such fluctuating dominance of processes.

7. Unless stated otherwise, the u in u + v represents the mean over subjects, and the v
represents SE,, the standard error based on between-subject variation.

8. The present discussion is concerned with population minima and maxima and is intended for
heuristic purposes; we do not consider tests based on sample extrema.

9. McClelland (1979) assumed that the noise in the final output activation level was distributed
as a standard normal distribution (z = 0,62 = 1). Such noise can alternatively be associated
with the criterion, as in Grice’s (1972) account of response evocation (see also Grice, Canham,
and Boroughs 1984; and Luce 1986, section 4.3); the criterion is then normally distributed with
unit variance 62 = 1 about its mean. The important constraints in either interpretation are that
the variance of the noise distribution is independent of the time constants, and that only one
sample from the distribution is used per trial. The time added by the response mechanism is
assumed to be stochastically independent of the other component of RT, and is not included in
the calculations that lead to equations (19) and (20).

10. The choice of values was cor}strained by the cascade equation’s (19) requirement that all

rate parameters be distinct. ~

11. If the slow unit is influenced by factor C, then a test is provided by lowering the level
of C, which may convert an additive relation between A and B into an overadditive one.

12. Ashby (1982, table 2) also found indications of good means additivity, but parameter
values in most of his examples caused one of the main effects to be substantially smaller
than the other, which tends to be associated with small interattions, and interactions were
not measured relative to main effect sizes. Ashby also reported that under some conditions the
cascade model could approximately satisfy the summation test. As discussed in section 26.3,
this implies failure of the mixture test.

13. For p; < p, < pj the model requires that (u3 — p)/(4, — 1) < (63 — 63)/(03 — 6}).
14. Unless stated otherwise the significance level is p = .05.
15. The Cartesian product of two sets consists of all possible pairs containing one member of

each set. If one set has m members, and the other, n, the Cartesian product consists of m x n
pairs.

16. The Kolmogorov-Smimov (K-S) test of distributional equality would be applicable if the
summation set for T;, ,,, for example, contained just the 31 statistically independent values
obtained from one of the 312 possible random pairings of the observations in conditions 11 and
22. The Cartesian-product summation set uses more of the information in the data, but the
resulting 961 values do not meet the K-S test’s requirement of statistical independence. The
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summation CDFs can be regarded as smoothed versions of the estimates based on single random
pairings, for which sampling properties of the K-S test statistic are likely to differ. As Grayson
(1983) observed, the same concern about applicability of the K-S test applies to empirical CDFs
generated by density estimation and numerical convolution (Ashby and Townsend 1980).
At this writing, unfortunately, there appears to be no appropriate replacement test. A test of
the identity of the two Cartesian-product CDFs is needed that is especially sensitive to likely
departures, such as the differences in spread expected from the AP model, rather than broad-
gauge and sensitive to location differences, as is the K-S test.

17. The deviations were shown by the same two of the five subjects in the na = 2 and na = 8
conditions. In each case the significant tests were located at a set of contiguous time values
(separated by 10 ms). They were of the same sign within subjects, but different between subjects.
For one subject the ten (six) significant tests for na = 2 (na = 8) were associated with mean
summation CDF values from about .02 to .29 (.12 to .47); the median significance level was .003
(.03); and the differences E; L2t k) — I:';‘z' 21(t k) were negative, with a mean of —.04 (—.08).
For the second subject the eight (nine) significant tests for na = 2 (na = 8) were associated with
mean summation CDF values from about .04 to .25 (.01 to .38); the median significance level
was .03 (.004); and the differences were positive, with a mean of .06 (.06).

18. We first estimated the median and interquartile range of each of the mixture CDFs for
each subject. Let 4, and ¢, be the means of these medians and IQRs, respectively, for subject k;
let 2, and ¢, be their means over subjects; and define #; = A4, + (£,/£.)(t — A.), a linear transfor-
mation of . The pair of transformed mixture distributions for each subject, Fyir,,,1,,() and
Erix(t,,. 1,08, produced by applying the same transformation E (f) = F(t;), then has the desired
property of having 1, as their mean median and ¢, as their mean IQR for all subjects.

19. For the method (convolution by fft), see Press, Flannery, Teukolsky, and Vetterling 1988,
section 12.4.

20. Note added in proof: To strengthen the summation test we have extended the search for
differences between Fr, .1 (#) and Fr .1, (P to histograms and density estimates, to supple-
ment what we had already done for CDFs, and we have fitted orthogonal polynomials to the
CDF differences to render the tests independent. These new tests strengthen our conclusions.
We have also begun to explore the sensitivity of the summation test to violations of the Slstage
model by applying it to data that simulate the AP model, thereby-introducing stochastic
dependence of stage durations. In an attempt to be realistic we created such data from
experiment 1, experiment 2, na = 2, and experiment 2, na = 8, by retaining the T;, and T,,
values in each data set, but replacing T;, and T,, by random halves of the values obtained by
pooling T;, and T,,. The summation test failed dramatically for all three simulations. For
example, in comparisons of proportions (analogous to those in fig. 26.3, where there were no
significant differences among 169 tests) there were 39, 69, and 91 tests for the three data sets,
of which 29, 37, and 57 were significant, respectively. In the IQR comparisons (analogous to
those in table 26.4) the differences and means were (24.0 + 2.6, 51.8), (16.7 + 5.0, 97.9), and
(102.4 + 1.9, 116.9), with corresponding significance levels p = .0002, p = .03, and p < .0001,
respectively. These results show that our procedures are sensitive to at least one type of
violation of the Slstage model of a size that might be observed in actual experiments.

21. Consider a three-factor experiment with each factor at two levels and assume that the
effects of the factors on mean RT are pairwise additive. The eight conditions can be represented
as vertices of a cube, where the three dimensions (x, y, z) are levels of the three factors. Each of
the six faces of the cube provides one two-dimensional summation test. For example, the front
face, where z = 1, provides T,,, + T,,, and T;,, + T (which should have the same distribu-
tion). Similarly the right face, where x = 2, provides T,,; + T,,,and T,;,+ T,,. These are just
particular cases of the test we have already used. In addition, there are six distributional equality
relations among four sums of RTs for conditions represented as vertices of oblique planes within
the cube, such as T,;, + T,,, and T}, + T5;;. The proof that these two sums (and two other
similar pairs, Ty,; + T51, and Ty,, + Ty) all have the same distribution, given the Slstage
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model, is similar to the proof of equation (5). These twelve summation tests reflect a basis
containing four orthogonal tests. One such set of four are those corresponding to the left, front,
right, and bottom faces of the cube. Thus the extra additive factor provides a disproportionate
increase in the number of possible summation tests of the Slstage model: One 2 x 2 x 2
experiment provides twice as many independent tests as two 2 X 2 experiments.
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