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Abstract

By using a confidence-rating procedure and varying the stimulus feature being

judged over a large range, it is possible to generate a family of psychometric

functions (PMFs), each based on a different partition of the ratings. An earlier paper

showed how the traditional single PMF based on binary-choice data from temporal-

order judgments can be decomposed into sensory and decision components, when it

is regarded as an estimate of a probability distribution. Here we extend this

development to the confidence-rating procedure, and use it to elucidate the relations

among the spreads and shapes of the resulting family of PMFs and their significance.

For example, we determine conditions under which the functions can have the same

spread and shape, differing only by translation on the stimulus axis. Application of

the multiple-function approach to several models, whose tests depend on values of

the PMF moments, shows it to have greater power than the single-function approach

for understanding the perceptual process. In perceptual domains other than temporal

order the most direct application of the proposed models and the multiple PMF

method would be to the judgment of differences between pairs of stimuli, such as

their pitch or brightness.
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1. Introduction

Often, in experiments in which confidence ratings are used in measuring
discriminability or testing psychophysical models, relatively few distinct values of the
stimulus variable are presented — sometimes only two — so that the data cannot provide
information about the spread or shape of the psychometric function (PMF). On the other
hand, when the PMF is of primary interest, the observer is often required to choose
between only two response alternatives. Suppose that in the same experiment in which
the stimulus varies from trial to trial over a large range, the observer is required to choose
the response from an ordered set of n > 2 categories, such as binary decisions with
confidence ratings. Then each of the n-1 partitions of the set of categories can be used to
generate a distinct PMF.3 The potential usefulness of some of the relations among the
members of such a family of PMFs for answering theoretical questions has occasionally
been recognized. For examples see Nachmias & Steinman (1963) and Eijkman, Thijssen,
& Vendrik (1966) in vision, Thijssen & Vendrik (1968) in audition, and Ulrich (1987) in
temporal-order perception.

In this paper we first review the representation of the PMF derived from binary-
response temporal-order judgments in terms of the components of a general model
discussed previously by Sternberg and Knoll (1973), and then generalize this treatment to
the confidence-rating procedure. One set of results are specifications of the conditions
under which the family of PMFs generated from the procedure can be expected all to
have the same spread or shape — i.e., to be parallel, in the sense that they differ by only a
translation on the stimulus (time-difference) axis. We also provide examples to show how
relations among the shapes of the family of functions can provide tests of models that a
single function would not permit and, in general, can help to decompose the observed
data into separate contributions from sensory and decision processes.

One reason for our interest in these issues were the findings by L. G. Allan (1975a) of
systematically non-parallel sets of PMFs from a procedure in which the observer was
required on each trial to judge the order of a pair of stimuli as well as rating them as
simultaneous versus successive, thereby generating four ordered response categories. In a
second study (Allan, 1975b) the observer was required on each trial to judge order and
rate the confidence in this judgment as high or low, again generating four ordered
response categories. Data from four rating categories (A = 1, 2, 3, 4) can be used to
generate a family of three PMFs: F1 = Pr{A > 1}, F2 = Pr{A > 2}, and F3 = Pr{A > 3}; in
both studies Allan found that the middle function (F2) was relatively symmetric while F1

was positively skewed and F3 negatively skewed. There was also a tendency in Allan’s
data for the variance of F2 to be greater than that of F1 or F3. Ulrich (1987) used three

3. There is controversy as to whether multiple criteria on a perceptual dimension, required for multiple
ratings, are less stable than a single criterion, resulting in a loss of sensitivity. Comparing ROC curves
generated from binary decisions versus ratings, Egan, Schulman, & Greenberg (1959) showed no
sensitivity loss in an auditory experiment, while Swets, Tanner, and Birdsall (1961) showed loss in a
visual experiment. In their review, Green and Swets (1966, Sections 4.5, 11.2) conclude that there is
minimal loss of sensitivity.
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response alternatives ("Sx first", "simultaneous", and "Sy first") to generate two PMFs,
similar to Allan’s F1 and F3. See Section 10 for examples.

What, if anything, might justify or explain our intuition that the members of a PMF
family should be parallel? And, if they are not parallel, can we learn something from the
relations among their locations, spreads, and shapes?

2. Experimental Paradigm

Consider the following experiment on temporal-order perception: The stimuli are Sx

presented at time t x and Sy presented at time t y. From trial to trial the time difference
t y − t x = d takes on various values that can be positive, zero, or negative. After each
presentation the observer judges whether Sx appeared to occur before Sy (response
′′t x < t y′′) or after Sy, and also provides a rating of confidence in the judgment. If we
ignore the confidence ratings, the data can be used to estimate a traditional PMF,

(1)F(d) = Pr{′′t x < t y′′ | d},

in which the probability of the judgment that Sx preceded Sy typically increases
monotonically with the stimulus variable d over a range from zero to one. Formally
similar paradigms involving other sensory features can be treated similarly: Was Sy

brighter or dimmer than Sx? Was Sy higher or lower in pitch than Sx?

3. Models for the Psychometric Function Generated by Binary Choice Data

In an earlier paper, Sternberg and Knoll (1973) showed how F(d) could be described
in terms of the components of a general independent-channels model. (We refer the
reader to that paper for details.) In this model, which is a generalization of numerous
models that have been proposed for temporal-order judgments, a "decision function"
converts a difference in central "arrival times" of two sensory signals into an order
judgment. Let the arrival times of stimuli Sx and Sy be represented by the random
variables Ux and Uy, respectively. The arrival-time difference Uy −Ux depends, in turn,
on the difference d = t y − t x between stimulation times t y and t x and separate arrival
latencies Rx and Ry according to

(2)Uy − Ux = (t y + Ry) − (t x + Rx) = Ry − Rx + d .

The decision rule induces a decision function G on values of W = Uy − Ux , associating
an order-decision probability with each value of the arrival-time difference, such that for
any value of d,

(3)G(W ) = Pr{′′t x < t y′′ | Uy − Ux = W} .

A simple decision rule, and one that is often assumed, is the deterministic decision
rule: the observer reports Sx before Sy if and only if the arrival-time difference is non-
negative (i.e., matches or exceeds a criterion of zero). Thus, G(W ) = 0 when W < 0, and
G(W ) = 1, otherwise. This rule is readily generalized to an arbitrary criterion, β :
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(4)
G(W ) ≡





0, W < β

1, W ≥ β ,

Much can be gained by representing the PMF, F(d) (which we assume to be a strictly
monotonic increasing function) as the distribution function of a random variable D:

(5)F(d) = Pr{D ≤ d}.

Sternberg and Knoll (1973, Section II) showed that for the decision rule expressed by Eq.
4,

(6)D = Rx − Ry + β .

They also showed that the decision function G need not be a step function; as long as it is
a nondecreasing function it can be regarded as the distribution function of a random
variable ∆ that is stochastically independent of Rx − Ry, and Eg. 6 can be generalized4 as

(7)D = Rx − Ry + ∆.

The PMF can thus be expressed additively in terms of sensory (Rx − Ry and decision
(∆) processes. That is, thinking of the PMF as the distribution function of a random
variable, it can be expressed as the convolution of the distribution of arrival-time
differences (or, more generally, of differences of the sensory feature being judged) and a
stochastically independent distribution that represents the decision process. Given this
representation, it follows that the first, second, and third moments of the PMF (and higher
cumulants as well) can be written as sums of the corresponding cumulants of Rx − Ry and
∆. This moment-additivity property means, for example, that if the decision process
remains fixed, a change in the variance of Rx − Ry is reflected as an equal change in the
variance of the PMF.

Many plausible decision mechanisms generate nondecreasing functions G that are not
step functions; one possibility, for example, is a rule like the deterministic one but with a
criterion β that fluctuates from trial to trial. Let B represent the fluctuating criterion.
Then, since G(W ) ≡ Pr{′′t x < t y′′ | Uy − Ux = W} = Pr{B ≤ W}, the decision function G can
be identified with the (cumulative) distribution of criterion values across trials. Thus G
must be a nondecreasing function, ∆ can be identified with B, and, as described by Eq. 7,
D is the convolution of the distribution of arrival-latency differences with this criterion
distribution.

4. In fact there is no need in this generalization for G to be a nondecreasing function. (It would seem
that few plausible models would violate this condition; but see Section 8 for one such model.) If G
rises from zero to one nonmonotonically it cannot be regarded as a distribution function of an actual
random variable. Nevertheless F is given by convolution of G with the distribution function of
Rx − Ry , and the formal calculation used to determine the cumulants of ∆ still produce quantities that

contribute additively to the corresponding moments of D. (Under these conditions F may or may not
be monotonic, depending on details of Rx − Ry and ∆.) Since such a ∆ contributes in the same way to

D as an actual random variable, it can be described as a "virtual random variable".
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4. A Family of Psychometric Functions from Ratings

The arguments outlined above can be generalized to the family of PMFs generated by
partitioning an ordered set of confidence ratings (or, more generally, an ordered set of
response categories) at different levels. Suppose the observer uses ratings A = 1, 2, . . . , n,
with A = 1 representing high confidence that Sx did not occur before Sy (typically
associated with large negative Uy − Ux values) and A = n corresponding to high
confidence that Sx did occur before Sy (typically associated with large positive Uy − Ux

values). Then the PMF of Eq. (1) can be replaced by a family of n − 1 such functions,
Fi(d), i = 1, 2, . . . , n − 1, with

(8)Fi(d) ≡ Pr{A > i | d}.

The function Fi(d) results from partitioning the ratings A into 0 < A ≤ i and i < A ≤ n,
i = 1, 2, . . .  , n − 1. Again, Fi(d) can be regarded as the distribution of a random variable
Di. That is, by analogy with Eq. 5,

(9)Fi(d) ≡ Pr{Di ≤ d}.

Given the rating procedure, where the ith partition of the ratings is associated with a
distinct decision process, represented by ∆i, and a distinct PMF, Fi, Eq. (7) becomes

(10)Di = (Rx − Ry) + ∆i .

Let µr (∆i) be the rth moment of ∆i. Because of the invariance of (Rx − Ry) across the
differences among the {∆i} associated with different members {Di} of the family of
PMFs, together with moment additivity for stochastically independent random variables,
moment differences µr (∆i) − µr (∆ j) among the decision processes will produce equal
moment differences µr (Di) − µr (D j) among the PMFs, and thus be observable.

Because, for all d, Pr{A > i} ≥ Pr{A > i + 1}, it follows from the definition in Eq. 8
that the Fi are characterized by a dominance property:

(11)Fi(d) ≥ Fi+1(d), −∞ < d < ∞, i = 1, 2, . . . , n − 2.

That is, the larger the rating index i the (lower, and) further to the right on the d-axis the
PMF lies. To say more about relations among the PMFs requires a model.

In the following five sections we describe different models of the decision process as
examples, and consider their implications.

5. Implications of a Model with Deterministic Decisions

We consider first the generalization to the confidence-rating procedure, diagrammed
in Figure 1, of the deterministic decision rule that was described by Eq. 4.

Let β i , i= 1, 2,..., n-1 be a set of ordered and fixed criteria on the continuum of arrival-
time difference Uy − Ux , with β i ≤ β i+1 and i = 1, 2, . . . , n − 2. To simplify statements,
define β0 = −∞ and β n = ∞. Then the conventionally assumed decision rule for the rating
procedure (e.g., Green & Swets, 1966, Section 2.4) can be stated as follows:
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(12)A = i iff β i−1 ≤ Uy − Ux < β i , i = 1, 2, . . . , n ,

or

(13)A ≤ i iff Uy − Ux ≤ β i , i = 1, 2, . . . , n − 1 .

Thus, if we define a set of rating-probability functions, hi(W ), each giving the probability
of a particular rating as a function of the arrival-time difference, W = Uy − Ux ,

(14)hi(W ) = Pr{A = i | Uy − Ux = W}, i = 1, 2, . . . , n,

then the deterministic decision rule requires that

(15)hi(W ) =




1, β i−1 ≤ W < β i

0, elsewhere
, i = 1, 2, . . . , n.

Now, by analogy with Eq. 3 we can define 5 a set of decision functions, one associated
with each rating from A = 1 to A = n-1:

(16)Gi(W ) = Pr{A > i | Uy − Ux = W}, i = 1, 2, . . . , n − 1.

Note that

(17)Gi(W ) =
n

j=i
Σ h j(W ), −∞ < W < ∞, i = 1, 2, . . . , n − 1.

As in the case of the Fi, it follows from the definition of the Gi, that they, also, are
characterized by a dominance property:

(18)Gi(W ) ≥ Gi+1(W ), −∞ < W < ∞, i = 1, 2, . . . , n − 1.

By analogy with Eq. 4, it follows from Eqs. 15 and 17 that for the deterministic decisions
model of Eq. 12 the Gi are all step functions,

(19)Gi(W ) =




0, W < β i

1, W ≥ β i

,

so that the random variables they represent are all constants. But from Eqs. 2, 8, and 15,

(20)Fi(d) = Pr{Uy − Ux ≥ β i} = Pr{Ry − Rx + d ≥ β i} = Pr{Rx − Ry + β i ≤ d} ,

so that by analogy to Eq. 6, we can represent the Di as follows:

(21)Di = Rx − Ry + β i , i = 1, 2, . . . , n − 1.

Thus for the deterministic decisions model the Di represent random variables that differ
from each other only because they inv olve different additive constants β i; in terms of the
Fi(d) we have

(22)Fi(d + β i) = F j(d + β j),

showing that for the deterministic decisions model the PMFs are parallel — i.e., differ
only by translation on the d-axis. That is, for r > 1, the µr (Fi) are the same for all i. Note

5. Without restrictions on the hi , this definition, which leads to the relations between the Gi and the hi

expressed in Eq. 17, may produce one or more Gi that are nonmonotonic. As discussed in footnote 4,
however, our analysis does not require monotonicity of the Gi .
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that this result does not depend on the distributions of the arrival latencies Rx and Ry.

Perhaps our intuition that the PMFs in a family should be parallel is based on an
implicit belief in the deterministic decisions model.

6. Implications of a General Probabilistic Decisions Model

Generalizing further to nondeterministic decision rules (where the Gi defined in Eq.
16 are not all step functions) we have by analogy with Eq. 7,

(23)Di = Rx − Ry + ∆i , i = 1, . . . , n − 1,

with Gi defined6 as the distribution function of ∆i . Just as in the case of the general
independent-channels model for the binary-choice experiment (Sternberg & Knoll, 1973,
Section IIC), further specification of the Gi beyond the dominance property in Eq. 18
follows from particular models of the decision mechanism; three examples of such
models are described in the sections below. But the formulation of the general model in
Eq. 23 allows us to state the restriction on the decision functions Gi that is required if the
PMFs Fi are to be parallel. Equation 23 makes it clear that in order for the distributions of
Di and D j to differ by translation only
( Di ≈ D j + K), the distributions of ∆i and ∆ j must differ by translation only (∆i ≈ ∆ j + K).7

That is, for the general decisions model the Fi are parallel on the d-axis if and only if
the Gi are parallel on the Uy − Ux axis.8

7. Implications of a Threshold Model

In one of the simplest nondeterministic decisions models, there is a threshold interval,
centered around Uy −Ux = 0, within which different Uy − Ux values cannot be
discriminated from each other. (See Model 3 in Sternberg & Knoll, 1973, Section IIC.)9

6. Again, as discussed in footnotes 4 and 6, if Gi is nonmonotonic, it must be regarded as a distribution
function of a "virtual" rather than "actual" random variable, but the arguments go through in the same
way.

7. Here and elsewhere in this paper, "≈" means "has the same distribution as".

8. For certain "pathological" distributions of Rx − Ry , parallel Fi may not require parallel Gi . Strictly

speaking, then, such distributions must be excluded. This can be done by adding the condition that
Rx − Ry have a finite mean — a condition that will be satisfied in all cases of interest.

9. This model differs from the general threshold model considered by Ulrich (1987), in which the
threshold can fluctuate and need not be centered around Uy −Ux = 0.
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Table 1.
Threshold Model:

Response Probabilities in Uy −Ux intervals
Interval h1 h2 h3 h4 G1 G2 G3

(−∞, β1) 1  0 0 0 0 0 0
(β1, −τ ) 0  1 0 0 1 0 0
(−τ , τ ) 0 0.5 0.5 0 1 0.5 0
(τ , β3) 0 0 1 0 1  1  0

(β3, +∞ ) 0  0 0 1 1 1 1

In the example shown in Figure 2 and described in Table 1, there are four ratings, and the
threshold lies within the interval on the Uy −Ux axis covered by the two middle ratings,
A = 2 and A = 3; within the threshold region (−τ < Uy −Ux < τ ) these ratings are
equiprobable, while outside the threshold region the deterministic decisions model
applies.

Table 2.
Threshold Model: Gi Distributions

Value Probability
G1 G2 G3

β1 1 0 0
−τ 0 0.5 0
τ 0 0.5 0
β3 0 0 1

Table 3.
Threshold Model: Gi Moments

Moment Distribution
G1 G2 G3

µ′1 β1 0 β3

µ2 0 τ 2 0
µ3 0 0 0

Examination of Tables 2 and 3 and of plots of the Gi in Figure 2b shows that whereas ∆1

and ∆3 are constants, with zero variance (and zero third moment), ∆2 has a two-point
distribution with variance τ 2 (and also zero third moment). Hence F1, and F3 must be
parallel, while the middle PMF, F2, must be flatter than the others, with its variance
larger by τ 2 than the variance of F1 and F3. Because the decision process contributes
nothing to them, the third moments of F1, F2, and F3 are due entirely to the contribution
from Rx − Ry, and must therefore be equal; to the extent that it is plausible that the
distribution of Rx − Ry is symmetric, the third moments should equal zero.10

10. Because µ2(F2) is greater than µ2(F1) and µ2(F3), the standardized third moment, µ3/µ1.5
2 , a

measure of skewness, will be smaller for F2 than for F1 or F3.
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8. Implications of a Model Where a Confident and Correct Report of

Successiveness May be Associated with an Erroneous Report of Order

Here we consider implications of a "successiveness model", in which the mechanisms
subserving the perception of order might be different and to some extent independent of
those subserving the perception of successiveness. Given that the perception of the order
of two events requires discrimination of their identities, whereas the perception of
successiveness might not, the separation of these aspects of temporal-order judgments
seems reasonable to consider. Such a model is analogous to the one considered by
Wickelgren (1969) for comparison of pitches, in which the degree of similarity between
the two pitches is discriminated by a different mechanism from the one that discriminates
the direction of any difference.

This model might be suitable for one of the procedures used by Allan (1975a), in
which observers judged the relative offset times of a tone and a light and provided one of
four judgments: "successive and tone first" (A=1), "simultaneous and tone first" (A=2),
"simultaneous and light first" (A=3), and "successive and light first" (A=4). When
δ ≤ |Uy − Ux | ≤ 2δ the observer can correctly and confidently judge Sx and Sy to be
successive (A = 1 or A = 4), while misperceiving their order (A = 4) on a fraction α > 0 of
trials. When 0 ≤ |Uy −Ux | ≤ δ , the observer is sensitive to the sign of Uy −Ux (A = 3 more
likely than A = 2, when Uy −Ux > 0), but the ratings indicate misperception of the order
(A = 2) on a fraction γ of trials, where γ > α .

Table 4. Successiveness Model:
Response Probabilities in Uy −Ux intervals

Interval h1 h2 h3 h4 G1 G2 G3

(−∞, −2δ ) 1  0 0 0  0  0  0
(−2δ , −δ ) 1 − α 0 0 α α α α

(−δ , 0) 0 1 − γ γ 0 1 γ 0
(0, δ ) 0 γ 1 − γ 0 1 1 − γ 0
(δ ,2δ ) α 0 0 1 − α 1 − α 1 − α 1 − α

(2δ , +∞ ) 0  0 0 1  1  1  1

A simple example of a set of rating-probability functions hi that might arise from
such a model in an experiment with four different ratings is shown in Figure 3 and listed
with the corresponding Gi in Table 4. Whereas A = 1, for example, is most likely when
Uy −Ux < −δ , it also occurs with a low probability (α ) when δ ≤ Uy −Ux < 2δ . Similarly,
A = 2 is most likely when −δ ≤ Uy −Ux < 0, but also occurs with a low probability (γ )
when 0 ≤ Uy −Ux < δ . (We hav e used rating-probability functions hi that are constant
within intervals on the Uy −Ux axis as well as intervals that are of equal width (δ ) for
illustrative purposes; in a more plausible model both these restrictions might be relaxed.)
Unlike the Gi shown in Figures 1b and 2b, not all the Gi generated by the present model
and shown in Figure 3b are nondecreasing functions; instead, G1 and G3 are
nonmonotonic and as a result cannot correspond to actual random variables.11 The

11. See footnotes 4 and 6.
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distribution to which G1 corresponds, for example, included in Table 5, would have
negative probability (−α ) at Uy −Ux = δ . Nonetheless for present purposes we can apply
the usual operations to derive the moments of the {Gi}, listed in Table 6, that combine
additively with those of Rx − Ry to produce the corresponding moments of the PMFs
{Fi}, as implied by Eq. 23.

Table 5. Successiveness Model:
Gi Distributions

Value Probability
G1 G2 G3

−2δ α  α  α
−δ 1 − α γ − α −α
0 0 1 − 2γ 0
δ −α γ − α 1 − α
2δ α  α  α

Table 6.
Successiveness Model: Gi Moments

Moment Distribution
G1 G2 G3

µ′1 −δ 0 δ
µ2 6δ 2α 6δ 2α + 2δ 2γ 6δ 2α
µ3 18δ 3α 0 −18δ 3α

The results of these calculations, in Tables 5 and 6, show that G2 has a greater
variance (by 2δ 2γ ) than G1 or G3, whose variances are equal, which means that F2 has a
greater variance (by 2δ 2γ ) than F1 or F3, whose variances are equal. They also show that
whereas G2 is symmetric, G1 is positively skewed (third moment = 18δ 3α ) and G3, is
negatively skewed by the same amount. If we assume that the Rx − Ry distribution is
symmetric, which is often plausible, this statement also applies to the PMFs, F1, F2, and
F3. Without this assumption, the model implies that µ3(F1) > µ3(F2) > µ3(F3), and that the
magnitude of the two differences is 18δ 3α .

Given the moments of the Gi, and the additive moment relations implied by Eq. 23, if
the model is valid one can use appropriate combinations of the first three moments of F1,
F2, and F3 not only to provide estimates of the decision-function parameters α , γ , and δ ,
but also to provide estimates of the second and third moments of the sensory component
Rx − Ry. This analysis furnishes a particularly vivid example of the increase gained in the
power to decompose sensory and decision processes by using a family of PMFs.

9. Implications of a Model with Fluctuating Criteria

Consider a decision model involving criteria β i on the Uy −Ux axis, like the
deterministic decisions model discussed in Section 5, but permit the criteria to fluctuate
from trial to trial so that they become random variables Bi. (For binary-choice data such



- 15 -

a model with a single criterion was considered in Section 3.) We assume that on each
trial the ordering of criteria, β i ≤ β i+1, assumed in Section 5 is preserved. This implies that
for any W = Uy −Ux , Pr{Bi ≤ W} ≥ Pr{Bi+1 ≤ W}. Furthermore, since
Pr{Bi ≤ W} = Pr{A > i | Uy − Ux = W} = Gi(W ) we see that not only can the decision
function Gi be identified as the distribution function of the criterion Bi (which,
incidentally, requires it to be a nondecreasing function) so that ∆i and Bi are the same,
but also that the dominance property (Eq. 18) required of the decision functions is
guaranteed. The criterion distributions may overlap so long as the "amount" of overlap is
not so great as to violate the dominance property. (If the distributions do overlap,
however, the requirement of criterion ordering on every trial implies that the Bi cannot
fluctuate independently.)

It should be noted that any model with nondecreasing Gi, can be regarded as
equivalent to a model with multiple fluctuating criteria, given that it is reasonable to
identify the Gi as criterion distributions. The model described in Section 8, however, is
an example of one that cannot be equated in this way, because its G1 and G2 are not
monotonic functions.

Having identified the Gi with the distributions of fluctuating criteria, we can
immediately state the conditions for parallel PMFs (Section 6): In a model with multiple
fluctuating criteria the Fi are parallel if and only if the criterion distributions are
identical except for location. That is, if we define B*

i = Bi − E(Bi) to be the distribution of
the ith criterion adjusted for zero mean, parallel Fi requires that

(24)B*
i ≈ B*

j , 1 ≤ i, j ≤ n − 1 .

How likely are the distributions of multiple criteria to differ only in mean? We are
not aware of any discussion of this question, and here we mention only two of the
considerations that might bear on it. The distributional identity requires, for example, that
the criterion variance be the same for extreme criteria as for middle-range criteria. From a
Weber-law viewpoint, on the other hand, one might expect the standard deviation of the
criterion distribution to increase linearly with |d | , or with |d − PSS| (where PSS is the
point of subjective simultaneity). The result would be a generalized bidirectional Weber
law: the PMFs associated with more extreme ratings would be flatter.

Perhaps a more compelling argument for constraining the criterion distributions arises
from the inherent symmetry of the decision aspects of the experimental paradigm: Given
a pair of stimuli, their assignment to Sx and Sy is arbitrary. A simple way of describing
the consequence is that the series of density functions of the criteria B1, B2, . . . on the
Uy −Ux axis (i.e., viewed from the low Uy −Ux end) should have the same sequence of
shapes as the corresponding series on the Ux −Uy axis (i. e., viewed from the opposite
end). This implies that the density function of B*

i should be the reflection of the density
function of B*

n−i, or

(25)B*
i ≈ −B*

n−i , i = 1, 2, . . . , n − 1.

But in order that the Fi differ by translation only, Eq. 24 must also be satisfied. Equations
24 and 25 together imply that the criterion distributions are symmetric about their means:
B*

i ≈ −B*
i , i = 1, 2, . . . , n-1 . Conversely, giv en Eq. 25, any asymmetry in the criterion

distributions will produce shape differences among the Fi.
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Suppose, for example, that the distribution of the lowest criterion is skewed toward
high Uy −Ux values, as illustrated in Figure 4. Then the argument from symmetry of the
experiment implies that the distribution of the highest criterion should be skewed toward
low Uy −Ux values (i.e., high Ux −Uy values). The consequence of the arrangement in the
figure is that the PMFs Fi would be more negatively skewed with larger i. In Section 5
we showed that observation of such shape differences among the Fi would require
rejection of a model with fixed criteria; here we have shown that they are consistent with
a model in which the criteria are permitted to fluctuate from trial to trial.

10. Families of Psychometric Functions from Three Experiments

To exemplify the inferential possibilities of the multiple-PMF method, we provide, as
examples, families of PMFs from three experimental procedures that have been used in
the study of temporal-order perception, procedures that used three or four ordered
response alternatives. The PMFs we have selected from each report are qualitatively
similar to the other PMFs in that report. However, they are not ideal for our purposes, as
they include more instances of non-monotonicity than we would like, as several fail to
span the full range of proportions from zero to one, and as they may contain lapses of
attention (and associated guessing) for which we have not corrected. In the absence of
better experiments, where necessary to deal with the first two inadequacies, we have
extended the PMF range to span the full (0,1) interval, and have rendered the PMFs
monotonic. The resulting adjusted PMFs are called "adjFi", and are tabulated along with
the PMFs, {Fi}, as measured.

In one of the procedures used by Allan (1975a) observers judged the offset times of a
tone and a light, making a successiveness judgment ("simultaneous" or "successive") as
well as an order judgment. The four combined judgments were, then, "successive and
tone first" (A=1), "simultaneous and tone first" (A=2), "simultaneous and light first"
(A=3), and "successive and light first" (A=4). (We are treating A=1 and A=4 as high
confidence order judgments, and A=2 and A=3 as low confidence order judgments.)
These permit defining three PMFs, F1 = Pr{A > 1}, F2 = Pr{A > 2}, and F3 = Pr{A > 3},
each giving a rating proportion as a function of the time difference, di (tone offset time -
light offset time). The values of F1, F2, and F3 for Observer T. M. are shown in the first
row of each of the three parts of Table 7, for each offset-time difference, di.
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Table 7: Allan (1975a), Observer T.M.
(Panel A of Figure 5)

d (ms) (-125) -100 -75 -50 -25 0 +25 +50 +75 +100 (+125)
Trials 96 96 96 96 384 96 96 96 96

F1 0.088 0.208 0.413 0.635 0.860 0.915 0.935 0.905 0.947
adjF1 0.000 0.088 0.208 0.413 0.635 0.860 0.915 0.918 0.929 0.947 1.000

F2 0.045 0.135 0.315 0.420 0.460 0.610 0.730 0.840 0.905
adjF2 0.000 0.045 0.135 0.315 0.420 0.460 0.610 0.730 0.840 0.905 1.000

F3 0.003 0.073 0.138 0.135 0.080 0.135 0.315 0.665 0.892
adjF3 0.000 0.003 0.073 0.095 0.118 0.126 0.135 0.315 0.665 0.892 1.000

To get these data into the form of a distribution function, the proportions { pi} have to be
extended to zero and one,12 and rendered strictly monotonic.13 The results of making
these adjustments are shown in the second rows of each of the three parts of Table 7, as
adjF1, adjF2, and adjF3, and are plotted in Panel A of Figure 5. In this table, as well as
tables 8 and 9, entries that have been created (to extend the PMFs to proportions zero and
one) or adjusted (to achieve monotonicity) are printed in boldface.

In the procedure used in a second study by Allan (1975b), observers judged the order
of the offset times of a light and a tone, and also made a two-level confidence judgment
("certain" or "uncertain"). The four responses were therefore "tone first" and "certain"
(A=1), "tone first" and "uncertain" (A=2), "light first" and "uncertain" (A=3), and "light
first" and "certain" (A=4). Again, these permit defining three PMFs, F1 = Pr{A > 1},
F2 = Pr{A > 2}, and F3 = Pr{A > 3}, each as a function of the time difference, d. The
values of F1, F2, and F3 for Observer N. C. are shown in Table 8, and plotted in Panel B
of Figure 5. In this case monotonizing was needed only for F1.

12. If a PMF fails to cover the full range of proportions from 0.0 to 1.0, one explanation is that the range
of d-values was too small. (In a better experiment, a sufficiently large range of d-values would be
used to avoid this problem.) A plausible alternative reason is that the observer was inattentive on
some trials, and made a response — a "guess" — that was independent of the stimulus, except perhaps
when the discrimination was especially easy. (It seems possible that if attention is "elsewhere", and is
returned to the task on presentation of the stimuli to be judged, but with a delay, the percept, degraded
by the delay, may be useful for an easy discrimination, but not for a difficult one, as perhaps suggested
by F1 and F3 in Table 7, and by F1 and F2 in Table 9.) Such lapses of attention cause estimation
difficulty even when the form of the PMF is known and only a threshold needs to be estimated (Green,
1995). Here the form is unknown and is the object of study, making it more important to use suitably
timed warnings, performance-based payoffs, adequate practice, and other methods to minimize their
occurrence.

13. The observed PMF is assumed to be an estimate of a strictly monotonic PMF. Monotonizing the
observed sequence of proportions Fi was done using the R function "cirPAVA", in the R-package "cir"
(A. P. Oron, 2023). One undesirable effect this has is to obscure flat regions of the PMFs that may be
due to lapses of attention.
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Table 8: Allan (1975b), Observer N.C.
(Panel B of Figure 5)

d (ms) (-125) -100 -75 -50 -25 0 +25 +50 +75 +100
Trials 32 32 32 32 128 32 32 32 32

F1 0.021 0.010 0.083 0.447 0.938 0.969 0.969 1.000 1.000
adjF1 0.000 0.010 0.038 0.083 0.447 0.938 0.959 0.979 1.000 1.000

F2 0.000 0.000 0.000 0.117 0.490 0.708 0.844 0.979 1.000

F3 0.000 0.000 0.000 0.021 0.116 0.188 0.510 0.854 1.000

In Ulrich’s (1987) "ternary response" procedure, observers were shown two brief
flashes, one above the other, and judged whether the bottom flash was first, the flashes
were "simultaneous", or the top flash was first. We used the data from Observer G. U. in
the low-intensity condition. For comparison to Allan’s observers, we noted that the
frequency of "simultaneous" judgments by Ulrich’s observer (37%) was similar to the
sums of the frequencies of the two middle judgments by Allan’s observers: 38% by T.M.
in Allan (1975a) and 31% by N.C. in Allan (1975b). For this reason we think of Ulrich’s
"simultaneous" judgment as combining A=2 and A=3, with "bottom flash first"
corresponding to A=1, and "top flash first" corresponding to A=4. The two PMFs are
then F1 = Pr{A > 1}, and F3 = Pr{A > 3}, each as a function of the time difference, d.
The results for Ulrich’s Observer G. U. in the low-intensity condition are shown in Table
3, and plotted in Panel C of Figure 5. In this case, monotonizing was necessary for both
PMFs.

Table 9: Ulrich (1987), Observer G.U., Low-Intensity Condition
(Panel C of Figure 5)

d (ms) (-125) -100 -75 -50 -25 0 +25 +50 +75 +100 (+125)
Trials 100 100 100 100 400 100 100 100 100

F1 0.020 0.060 0.390 0.730 0.950 0.940 0.940 0.910 0.960
adjF1 0.000 0.020 0.060 0.390 0.730 0.812 0.894 0.940 0.950 0.960 1.000

F3 0.010 0.030 0.110 0.060 0.050 0.120 0.430 0.810 0.940
adjF3 0.000 0.010 0.030 0.052 0.073 0.097 0.120 0.430 0.810 0.940 1.000

As the predictions from some of the models described above are in terms of moments
of PMFs, it is useful to have a method for estimating these moments. One way to do this
is to use a modified form of the non-parametric Spearman-Karber method (Spearman,
1908, Epstein & Churchman, 1944; Church & Cobb, 1973; Sternberg, Knoll, &
Zukofsky, 1982). According to this method, the estimated rth raw moment is given by

(25)µ̂′r =
1

r + 1

k+1

i=1
Σ (pi − pi−1)





sr+1
i − sr+1

i−1

si − si−1





,
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where {si} are the stimulus values (in this case, the {di} ), and { pi} are the corresponding
proportions. In a thorough evaluation of this method, Miller & Ulrich (2001) have shown
that it is accurate in estimating the mean and variance of a PMF — sufficiently accurate
to be superior to probit analysis in situations where probit analysis is appropriate — but
that the estimate it provides of the standardized third central moment, µ̂3/µ̂3/2

2 , a measure
of skewness, has the correct sign but may be an underestimate.14

In an alternative "cdf-sample" method, we treated the PMF as a (cumulative)
distribution function, and generated a sample associated with that distribution. We did
this by interpolating closely-spaced points d1, d2, . . , dn and corresponding proportions
p1, p2, . . , pn in the PMF, where p1 = 0 and pn = 1. In our implementation,
di+1 − di = 1 ms. We then generated a subsample of d-values for each (di , di+1) interval,
distributed uniformly in that interval, with the size of that subsample (approximately)
proportional to the (pi+1 − pi) difference. To ensure sufficient accuracy for this (integer)
approximation, we used a large multiplier of the difference. Thus, the size of the ith

subsample was the rounded value of 106 × (pi+1 − pi). The full sample was created by
concatenating the subsamples; moments and other statistics were then determined from
the full sample. Results of these computations, averaged over results of the two methods,
are shown in Table 10.

Table 10: Moment Estimates from Two Methods

measure µ̂′1/10 µ̂2/103 µ̂3/104

Family 1
adjF1 -3.53 2.85 +16.31
adjF2 +0.10 4.49 -2.51
adjF3 +5.20 2.77 -22.12

Family 2
adjF1 -2.38 0.70 +0.22
F2 +0.90 1.11 +1.84
F3 +4.53 0.97 -2.02

Family 3
adjF1 -3.14 2.10 +13.91
adjF3 +4.85 1.78 -11.76

The Spearman-Karber and cdf-sample methods gav e results that differ by a mean of
0.03%.15

14. Using PMFs similar to those plotted in Figure 5, we found the bias to be negligible: The mean
estimates were 99.998% and 100.04% of the true values, based on Spearman-Karber and cdf-sample
methods, respectively.

15. For eight tests of the accuracy of such estimates, using PMFs similar to those plotted in Figure 5, but
with known moments, the Spearman-Karber method recovered the first three moments with mean
absolute errors of 0.0005%, 0.0016%, and 0.0034%, respectively. For the cdf-sample method the
corresponding percentages are 0.033%, 0.043%, and 0.050%, respectively.



- 22 -

Model Tests. Three of the models we have discussed have testable quantitative properties:

According to the Deterministic Decisions Model (Section 5), the PMFs are parallel,
which is clearly false, for all three Families.

According to the Threshold Model (Section 7), (a) F2 has a larger variance than F1 or F3,
for which Families 1 and 2 provide evidence; (b) F1 and F3 are parallel, falsified by all
three families; and (c) the three PMFs have the same third moment, falsified by all three
families.

According to the Successiveness Model (Section 8), and assuming that the distribution of
Rx − Ry is symmetric, which is plausible, (a) the variance of F2 is greater than that of F1

or F3, consistent with Families 1 and 2; (b) F1 is positively skewed and F3 negatively
skewed, consistent with all three Families. (c) F2 is symmetric, supported by neither
Family 1 nor Family 2. Without assuming the symmetry of Rx − Ry, (a) remains, (b) is
replaced by µ3(F3) < µ3(F2) < µ3(F1), for which positive evidence is provided by families 1
and 3, but negative evidence by family 2, and (c) is deleted.

Given the three observed PMF families we considered, and the three models with testable
quantitative properties, if more complete data were found with similar properties, the
relations among the moments of family members suggest that the Successiveness Model
would be the most promising.

11. Conclusions

Much can be gained at a small cost by enriching the response alternatives in a
psychophysical experiment: Relations among the moments of the resulting family of
PMFs can be highly informative. To exemplify the inferential possibilities, we described
a set of models for judgments of temporal order, and determined their implications. We
then used estimates of the moments of the members of three families of observed PMFs
to test some of the models.

In answer to the questions with which we began this paper, our intuition that the
members of a PMF family should be parallel would be explained if, for example, we
believed that the deterministic decisions model (Section 5) were valid. And if the PMFs
are not parallel, we have seen from PMF moment comparisons that much can be learned
from differences among the spreads and shapes of family members, which enabled us to
evaluate the other models we have described.

Some of our findings about the models include the following:

(1) For the deterministic decisions model the psychometric functions Fi are parallel —
i.e., differ only by translation on the stimulus axis.

(2) For the general probabilistic decisions model, the PMFs Fi are parallel on the
stimulus-axis if and only if the decision functions Gi are parallel on the Uy −Ux axis.

(3) For the threshold model, with four ordered response categories, the middle
psychometric function is flatter than the others, which are parallel.

(4) For a model with fluctuating criteria, the Fi are parallel if and only if the criterion
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distributions are identical except for location.

(5) For the model of Section 8, where successiveness can be accurately discriminated
while order may not be, and there are four ordered response categories, the PMFs F1 and
F3 are skewed (positively and negatively, respectively), while F2 has greater variance, but
is symmetric.

Based on the observed PMF families we considered, and among the three models we
tested quantitatively, it is this last model, the successiveness model, similar to a model
proposed for pitch perception by Wickelgren (1969), that seems the most promising.

These findings depend on treating each PMF as the convolution of two stochastically
independent distribution functions: the distribution of the sensory difference (here, the
arrival time difference), and a decision process represented as a distribution function.
Model evaluations made use of the relations among the first three moments of the PMFs
within a family, together with the cumulant-additivity property for sums of stochastically
independent random variables.
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Appendix: R Functions for Spearman-Karber and CDF.to.Sample Methods

spearkarb <- function(s,p){
#s is vector of stimulus values
#p is corresponding vector of increasing probability values.
#first p must be zero; last p must be 1; otherwise warning.
#p values must increase monotonically, otherwise warning.
step <- median(diff(s))
if(p[1]>0){warning("Extrapolation to zero needed")}
if(p[length(p)]<1) {warning("Extrapolation to one needed")}
#extend stimvals and pvals to ensure extremes
S <- c(min(s)-step,s,max(s)+step)
P <- c(0,p,1)
dP <- diff(P)
if(min(dP)<0) {warning("Non-Monotonic Proportions")}
dS <- diff(S)
ratio <- dP/dS
d2S <- diff(Sˆ2)
d3S <- diff(Sˆ3)
d4S <- diff(Sˆ4)
M1 <- sum(ratio*d2S)/2
M2 <- sum(ratio*d3S)/3
M3 <- sum(ratio*d4S)/4
mean <- M1
var <- M2 - M1ˆ2
m2 <- var
m3 <- M3 - 3*M1*M2 + 2*M1ˆ3
output <- c(mean,var,m3)
names(output) <- c("mean","var","m3")
return(output)
}

cdf.to.sample <- function(stimvals,propvals,multiplier=1000000,sep=1){
interpolated <- approx(stimvals,propvals,xout=seq(from=min(stimvals),

to=max(stimvals),by=sep))
s.vals <- interpolated[[1]]
props <- interpolated[[2]]
len <- length(s.vals)
samp <- NA
for(kval in 1:(len-1)){
if (props[kval+1] - props[kval] > 0)

{n.subsamp <- round(multiplier*(props[kval+1] - props[kval]))
subsamp <- seq(from=s.vals[kval],to=s.vals[kval+1],

length.out = n.subsamp)
if( kval < (len-1) )
{##remove last element if not last subsamp)
subsamp <- subsamp[-n.subsamp]}

samp <- c(samp,subsamp)
}

}
##remove initial entry (NA) in samp
samp <- samp[!is.na(samp)]
return(samp)
}


