Cognitive Neuroscience
- Gagliardi, C.M., Normandin, M.E., Keinath, A.T., Julian, J.B., Lopez, M.R., Ramos-Alvarez, M.M., Epstein,R.A., & Muzzio,I.A. (2024). Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation. Nature Communications, 15: 5968.
- Peer, M., Nadar, C., & Epstein, R. A. (2023). The format of the cognitive map depends on the structure of the environment. Journal of Experimental Psychology: General, in press.
- Raithel, C. U., Miller, A. J., Epstein, R. A., Kahnt, T., & Gottfried, J. A. (2023). Recruitment of grid-like responses in human entorhinal and piriform cortices by odor landmark-based navigation. Current Biology, 33: 1-10.
- Brunec, I., Nantais, M., Sutton, J., Epstein, R. A., & Newcombe, N. S. (2023). Exploration patterns shape cognitive map learning. Cognition, 233: 105360.
- Harel, A., Nandor, J. D., Bonner, M. F., & Epstein, R. A. (2022). Early Electrophysiological Markers of Navigational Affordances in Scenes. Journal of Cognitive Neuroscience, 34(3): 397-410.
- Sun, L., Frank, S. M., Epstein, R.A., & Tse, P. U. (2021). The parahippocampal place area and hippocampus encode the spatial significance of landmark objects. NeuroImage, 236: 118081.
- Peer, M. & Epstein, R. A. (2021). The human brain uses spatial schemas to represent segmented environments. Current Biology, 31: 1-12.
- Bonner, M. F. & Epstein, R. A. (2021). Object representations in the human brain reflect the co-occurrence statistics of vision and language Nature Communications, 12: 4081.
- Peer, M., Brunec, I. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 25(1): 37-54.
- Keinath, A. T., Rechnitz, O., Balasubramanian, V., & Epstein, R. A. (2021). Environmental deformations dynamically shift human spatial memory. Hippocampus, 31(1): 89-101.
- Epstein, R. A. (2020). Spatial knowledge and navigation. In D. Poeppel, G. R. Mangun & M. S. Gazzaniga, (Eds), The Cognitive Neurosciences, 6th Edition. Cambridge, MA: MIT Press.
- Epstein, R.A. & Baker, C.I. (2019). Scene perception in the human brain. Annual Review of Vision Science, 5.
- Keinath, A.T., Epstein, R.A. & Balasubramanian, V. (2018). Environmental deformations dynamically shift the grid cell spatial metric. eLife, 7: e38169.
- Mattar, M.G., Olkkonen, M., Epstein, R.A. & Aguirre, G.K. (2018). Adaptation decorrelates shape representations. Nature Communications, 9: 3812.
- Julian, J.B., Keinath, A.T., Marchette, S.A. & Epstein, R.A. (2018). The neurocognitive basis of spatial reorientation. Current Biology, 28: R1059–R1073.
- Julian, J.B., Kamps, F.S., Epstein, R.A., & Dilks, D.D. (2018). Dissociable spatial memory systems revealed by typical and atypical human development. Developmental science, e12737.
- Bonner, M.F. & Epstein, R.A. (2018). Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLoS Comput Biol, 14(4): e1006111.
- Julian, J.B., Keinath, A.T., Frazzetta, G. & Epstein, R.A. (2018). Human entorhinal cortex represents visual space using a boundary-anchored grid. Nature Neuroscience, 21(2): 191-194.
- Epstein, R.A., Patai, E.Z., Julian, J.B. & Spiers, H.J. (2017). The cognitive map in humans: spatial navigation and beyond. Nature Neuroscience, 20(11): 1504-1513.
- Olkkonen, M., Aguirre, G.K. & Epstein, R.A. (2017). Expectation modulates repetition priming under high stimulus variability. Journal of Vision, 17(6): 10, 1-16.
- Bonner, M.F. & Epstein, R.A. (2017). Coding of navigational affordances in the human visual system. Proceedings of the National Academy of Sciences, 114(18): 4793-4798.
- Hafri, A., Trueswell, J.C. & Epstein, R.A. (2017). Neural representations of observed actions generalize across static and dynamic visual input. The Journal of Neuroscience, 37(11): 3056-3071.
- Keinath, A.T., Julian, J.B., Epstein, R.A. & Muzzio, I.A. (2017). Environmental geometry aligns the hippocampal map during spatial orientation. Current Biology, 27: 1-9.
- Marchette, S.A., Ryan, J. & Epstein, R.A. (2017). Schematic representations of local environmental space guide goal-directed navigation. Cognition, 158: 68-80.
- Julian, J.B., Ryan, J. & Epstein, R.A. (2017). Coding of object size and object category in human visual cortex. Cerebral Cortex, 27(6): 3095-3109.
- Vass, L.K. & Epstein, R.A. (2017). Common neural representations for visually guided reorientation and spatial imagery. Cerebral Cortex, 27(2): 1457-1471.
- Julian, J.B., Ryan, J., Hamilton, R.H. & Epstein, R.A. (2016). The Occipital Place Area is causally involved in representing environmental boundaries during navigation. Current Biology, 26: 1104-1109.
- Bryan, P.B., Julian, J.B. & Epstein, R.A. (2016). Rectilinear edge selectivity is insufficient to explain the category selectivity of the parahippocampal place area. Frontiers in Human Neuroscience, 10(137).
- Marchette, S.A., Vass, L.K., Ryan, J. & Epstein, R.A. (2015). Outside looking in: Landmark generalization in the human navigational system. The Journal of Neuroscience, 35(44): 14896-14908.
- Julian, J.B., Keinath, A.T., Muzzio, I.A. & Epstein, R.A. (2015). Place recognition and heading retrieval are mediated by dissociable cognitive systems in mice. Proceedings of the National Academy of Sciences, 112(20): 6503-6508.
- Pegors, T.K., Mattar, M.G., Bryan, P.B., & Epstein, R.A. (2015). Simultaneous perceptual and response biases on sequential face attractiveness judgments. Journal of Experimental Psychology: General, 144(3): 664-73.
- Pegors, T.K., Kable, J., Chatterjee, A., & Epstein, R.A. (2015). Common and unique representations in frontal cortex for face and place attractiveness. Journal of Cognitive Neuroscience, 27(5): 959-973.
- Epstein, R.A. (2014). Neural systems for visual scene recognition. In M. Bar & K. Keveraga (Eds.), Scene Vision. Cambridge MA: MIT Press, pp. 105-134.
- Marchette, S.A., Vass, L.K., Ryan, J., & Epstein, R.A. (2014). Anchoring the neural compass: Coding of local spatial reference frames in human medial parietal lobe. Nature Neuroscience, 17(11): 1598-1606.
- Epstein, R.A. & Vass, L.K. (2014). Neural systems for landmark-based wayfinding in humans. Philosophical Transactions of the Royal Society London B, 369(1635): 20120533.
- Weisberg, S.M., Schinazi, V.R., Newcombe, N.S., Shipley, T.F. & Epstein, R.A. (2013). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning, Memory and Cognition, 40(3): 669-682.
- Epstein, R.A. & Julian, J.B. (2013). Scene areas in humans and macaques. Neuron, 79(4): 615-617.
- Bastin, J., Vidal, J.R., Bouvier, S., Perrone-Bertolotti, M., Benis, D., Kahane, P., David, O., Lachaux, J.P. & Epstein, R.A. (2013). Temporal components in the parahippocampal place area revealed by human intracerebral recordings. Journal of Neuroscience, 33(24): 10123-10131.
- Vass, L.K. & Epstein, R.A. (2013). Abstract representations of location and facing direction in the human brain. Journal of Neuroscience, 33(14): 6133-6142.
- Schinazi, V.R., Nardi, D., Newcombe, N.S., Shipley, T.F.& Epstein, R.A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6): 515-528.
- Troiani, V., Stigliani, A., Smith, M.E. & Epstein, R.A. (2012). Multiple object properties drive scene-selective regions. Cerebral Cortex, 24(4): 883-897.
- Epstein, R.A. & Morgan, L.K. (2012). Neural responses to visual scenes reveals inconsistencies between fMRI adaptation and multivoxel pattern analysis. Neuropsychologia, 50(4): 530-543.
- MacEvoy, S.P. & Epstein, R.A. (2011). Constructing scenes from objects in human occipitotemporal cortex. Nature Neuroscience, 14: 1323-1329.
- Epstein, R.A. & MacEvoy, S.P. (2011). Making a scene in the brain. In L. Harris & M. Jenkin (Eds.), Vision in 3d Environments. Cambridge: Cambridge University Press.
- Epstein, R.A. (2011). Cognitive Neuroscience: Scene layout from vision and touch. Current Biology, 21(11): R437-R438.
- Morgan, L.K., MacEvoy, S.P., Aguirre, G.K., & Epstein, R.A. (2011). Distances between real-world locations are represented in the human hippocampus. Journal of Neuroscience, 31(4): 1238-1245.
- Ward, E.J., MacEvoy, S.P. & Epstein, R.A. (2010). Eye-centered encoding of visual space in scene-selective regions. Journal of Vision, 10(14):6: 1-12.
- Schinazi, V.R. & Epstein, R.A. (2010). Neural correlates of real-world route learning. NeuroImage, 53(2): 725-735.
- Epstein, R.A. & Ward, E. J. (2010). How reliable are visual context effects in the parahippocampal place area? Cerebral Cortex, 20(2): 294-303.
- MacEvoy, S.P. & Epstein, R.A. (2009). Decoding the representation of multiple simultaneous objects in human occipitotemporal cortex. Current Biology, 19: 943-947.
- Epstein, R.A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12: 388-396.
- Epstein, R.A., Parker, W. E. & Feiler, A.M. (2008). Two kinds of fMRI repetition suppression? Evidence for dissociable neural mechanisms. Journal of Neurophysiology, 99: 2877-2886.
- MacEvoy, S.P., & Epstein, R.A. (2007). Position selectivity in scene- and object-responsive occipitotemporal regions. Journal of Neurophysiology, 98: 2089-2098.
- Epstein, R.A., Parker, W.E., & Feiler, A.M. (2007). Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. Journal of Neuroscience, 27: 6141-6149.
- Epstein, R.A., Higgins, J.S., Jablonski, K., & Feiler, A.M. (2007). Visual scene processing in familiar and unfamiliar environments. Journal of Neurophysiology, 97: 3670-3683.
- Dove, A., Manly, T., Epstein, R., & Owen, A.M. (2007). The engagement of mid-ventrolateral prefrontal cortex and posterior brain regions in intentional cognitive activity. Human Brain Mapping 29: 107–119.
- Epstein, R.A. & Higgins, J.S. (2007). Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cerebral Cortex, 17: 1680-1693.
- Hon, N., Epstein, R.A., Owen, A.M. & Duncan, J. (2006). Frontoparietal activity with minimal decision and control. Journal of Neuroscience, 26: 9805-9809.
- Epstein, R.A., Higgins, J.S., Parker, W., Aguirre, G.K., & Cooperman, S. (2006). Cortical correlates of face and scene inversion: A comparison. Neuropsychologia, 44: 1145-1158.
- Epstein, R.A. (2005). The cortical basis of visual scene processing. Visual Cognition, 12: 954-978.
- Epstein, R.A., Higgins, J.S. & Thompson-Schill, S.L. (2005). Learning places from views: Variation in scene processing as a function of experience and navigational ability. Journal of Cognitive Neuroscience, 17: 73-83.
- Gauthier, I., Curby, K.M., Skludlarski, P. & Epstein, R.A. (2005). Individual differences in FFA activity suggest independent processing at different spatial scales. Cognitive, Affective & Behavioral Neuroscience, 5: 222-234.
- Lee, A.C.H., Bussey, T.J., Murray, E.A., Saksida, L.M., Epstein, R.A., Kapur, N., Hodges, J.R. & Graham, K.S. (2005). Perceptual deficits in amnesia: challenging the medial temporal lobe 'mnemonic' view. Neuropsychologia, 43: 1-11.
- Epstein, R., Graham, K.S., & Downing, P.E. (2003). Viewpoint-specific scene representations in human parahippocampal cortex. Neuron, 37: 865-876.
- Epstein, R., DeYoe, E.A., Press, D.Z., Rosen, A.C. & Kanwisher, N. (2001). Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex. Cognitive Neuropsychology, 18: 481-508.
- Epstein, R. & Kanwisher, N. (1999). Repetition blindness for locations: Evidence for automatic spatial coding in an RSVP task. Journal of Experimental Psychology: Human Perception and Performance, 25: 1855-1866.
- Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. (1999). The parahippocampal place area: Recognition, navigation, or encoding? Neuron, 23:115-125.
- Epstein, R. & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392: 598-601.
Conciousness & Phenomenology
- Epstein, R. (2004). Consciousness, art and the brain: Lessons from Marcel Proust. Consciousness & Cognition, 13: 213-240.
- Commentary: Galin, D. (2004). Aesthetic experience: Marcel Proust and the neo-Jamesian structure of awareness. Consciousness & Cognition, 13: 241-253.
- Commentary: Dryden, D. (2004). Memory, imagination, and the cognitive value of the arts. Consciousness & Cognition, 13: 254-267.
- Epstein, R. (2000). The neural-cognitive basis of the Jamesian stream of thought. Consciousness & Cognition, 9: 550-575.
- Commentary: Galin, D. (2000). Comments on Epstein's neurocognitive interpretation of William James' model of consciousness. Consciousness & Cognition, 9: 576-583.
- Epstein, R. (2000). Substantive thoughts about substantive thoughts: A reply to Galin. Consciousness & Cognition, 9: 584-590.
Computer Vision
- Yuille, A.L., Snow, D., Epstein, R. & Belhumeur, P.N. (1999). Determining generative models of objects under varying illumination: Shape and albedo from multiple images using SVD and integrability. International Journal of Computer Vision, 35: 203-222.
- Epstein, R. , Yuille, A.L. & Belhumeur, P.N. (1996). Learning object representations from lighting variations. In Object Representation in Computer Vision II, J. Ponce, A. Zisserman & M. Hebert, eds. Springer Lecture Notes in Computer Science, 108-116.
- Epstein, R., Hallinan, P.W. & Yuille, A.L. (1995). 5±2 eigenimages suffice: An empirical investigation of low-dimensional lighting models. In Proceedings of the IEEE Workshop on Physics-Based Modeling in Computer Vision.
- Epstein, R. & Yuille, A.L. (1994). Training a general purpose deformable template. In Proceedings of the First IEEE Conference on Image Processing, Vol. 1. Austin, TX: IEEE Society Press, 203-207.